Aromātai
2025n^{12}
Kimi Pārōnaki e ai ki n
24300n^{11}
Tohaina
Kua tāruatia ki te papatopenga
15n^{10}\times 3\times 45n^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 5 kia riro ai te 10.
15n^{12}\times 3\times 45
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 10 me te 2 kia riro ai te 12.
45n^{12}\times 45
Whakareatia te 15 ki te 3, ka 45.
2025n^{12}
Whakareatia te 45 ki te 45, ka 2025.
\frac{\mathrm{d}}{\mathrm{d}n}(15n^{10}\times 3\times 45n^{2})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 5 kia riro ai te 10.
\frac{\mathrm{d}}{\mathrm{d}n}(15n^{12}\times 3\times 45)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 10 me te 2 kia riro ai te 12.
\frac{\mathrm{d}}{\mathrm{d}n}(45n^{12}\times 45)
Whakareatia te 15 ki te 3, ka 45.
\frac{\mathrm{d}}{\mathrm{d}n}(2025n^{12})
Whakareatia te 45 ki te 45, ka 2025.
12\times 2025n^{12-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
24300n^{12-1}
Whakareatia 12 ki te 2025.
24300n^{11}
Tango 1 mai i 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}