Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(5a-a^{2}\right)
Tauwehea te 3.
a\left(5-a\right)
Whakaarohia te 5a-a^{2}. Tauwehea te a.
3a\left(-a+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-3a^{2}+15a=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-15±\sqrt{15^{2}}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-15±15}{2\left(-3\right)}
Tuhia te pūtakerua o te 15^{2}.
a=\frac{-15±15}{-6}
Whakareatia 2 ki te -3.
a=\frac{0}{-6}
Nā, me whakaoti te whārite a=\frac{-15±15}{-6} ina he tāpiri te ±. Tāpiri -15 ki te 15.
a=0
Whakawehe 0 ki te -6.
a=-\frac{30}{-6}
Nā, me whakaoti te whārite a=\frac{-15±15}{-6} ina he tango te ±. Tango 15 mai i -15.
a=5
Whakawehe -30 ki te -6.
-3a^{2}+15a=-3a\left(a-5\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te 5 mō te x_{2}.