Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

15x^{2}-15>-16x
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te x^{2}-1.
15x^{2}-15+16x>0
Me tāpiri te 16x ki ngā taha e rua.
15x^{2}-15+16x=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\times 15\left(-15\right)}}{2\times 15}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 15 mō te a, te 16 mō te b, me te -15 mō te c i te ture pūrua.
x=\frac{-16±34}{30}
Mahia ngā tātaitai.
x=\frac{3}{5} x=-\frac{5}{3}
Whakaotia te whārite x=\frac{-16±34}{30} ina he tōrunga te ±, ina he tōraro te ±.
15\left(x-\frac{3}{5}\right)\left(x+\frac{5}{3}\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{3}{5}<0 x+\frac{5}{3}<0
Kia tōrunga te otinga, me tōraro tahi te x-\frac{3}{5} me te x+\frac{5}{3}, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-\frac{3}{5} me te x+\frac{5}{3}.
x<-\frac{5}{3}
Te otinga e whakaea i ngā koreōrite e rua ko x<-\frac{5}{3}.
x+\frac{5}{3}>0 x-\frac{3}{5}>0
Whakaarohia te tauira ina he tōrunga tahi te x-\frac{3}{5} me te x+\frac{5}{3}.
x>\frac{3}{5}
Te otinga e whakaea i ngā koreōrite e rua ko x>\frac{3}{5}.
x<-\frac{5}{3}\text{; }x>\frac{3}{5}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.