Whakaoti mō x
x = \frac{7}{5} = 1\frac{2}{5} = 1.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+1=\frac{36}{15}
Whakawehea ngā taha e rua ki te 15.
x+1=\frac{12}{5}
Whakahekea te hautanga \frac{36}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x=\frac{12}{5}-1
Tangohia te 1 mai i ngā taha e rua.
x=\frac{12}{5}-\frac{5}{5}
Me tahuri te 1 ki te hautau \frac{5}{5}.
x=\frac{12-5}{5}
Tā te mea he rite te tauraro o \frac{12}{5} me \frac{5}{5}, me tango rāua mā te tango i ō raua taurunga.
x=\frac{7}{5}
Tangohia te 5 i te 12, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}