Tauwehe
\left(x-3\right)\left(15x+19\right)
Aromātai
\left(x-3\right)\left(15x+19\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-26 ab=15\left(-57\right)=-855
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 15x^{2}+ax+bx-57. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-855 3,-285 5,-171 9,-95 15,-57 19,-45
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -855.
1-855=-854 3-285=-282 5-171=-166 9-95=-86 15-57=-42 19-45=-26
Tātaihia te tapeke mō ia takirua.
a=-45 b=19
Ko te otinga te takirua ka hoatu i te tapeke -26.
\left(15x^{2}-45x\right)+\left(19x-57\right)
Tuhia anō te 15x^{2}-26x-57 hei \left(15x^{2}-45x\right)+\left(19x-57\right).
15x\left(x-3\right)+19\left(x-3\right)
Tauwehea te 15x i te tuatahi me te 19 i te rōpū tuarua.
\left(x-3\right)\left(15x+19\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
15x^{2}-26x-57=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 15\left(-57\right)}}{2\times 15}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 15\left(-57\right)}}{2\times 15}
Pūrua -26.
x=\frac{-\left(-26\right)±\sqrt{676-60\left(-57\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-\left(-26\right)±\sqrt{676+3420}}{2\times 15}
Whakareatia -60 ki te -57.
x=\frac{-\left(-26\right)±\sqrt{4096}}{2\times 15}
Tāpiri 676 ki te 3420.
x=\frac{-\left(-26\right)±64}{2\times 15}
Tuhia te pūtakerua o te 4096.
x=\frac{26±64}{2\times 15}
Ko te tauaro o -26 ko 26.
x=\frac{26±64}{30}
Whakareatia 2 ki te 15.
x=\frac{90}{30}
Nā, me whakaoti te whārite x=\frac{26±64}{30} ina he tāpiri te ±. Tāpiri 26 ki te 64.
x=3
Whakawehe 90 ki te 30.
x=-\frac{38}{30}
Nā, me whakaoti te whārite x=\frac{26±64}{30} ina he tango te ±. Tango 64 mai i 26.
x=-\frac{19}{15}
Whakahekea te hautanga \frac{-38}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
15x^{2}-26x-57=15\left(x-3\right)\left(x-\left(-\frac{19}{15}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te -\frac{19}{15} mō te x_{2}.
15x^{2}-26x-57=15\left(x-3\right)\left(x+\frac{19}{15}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
15x^{2}-26x-57=15\left(x-3\right)\times \frac{15x+19}{15}
Tāpiri \frac{19}{15} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15x^{2}-26x-57=\left(x-3\right)\left(15x+19\right)
Whakakorea atu te tauwehe pūnoa nui rawa 15 i roto i te 15 me te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}