Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
15x^{2}-12-8x=0
Tangohia te 8x mai i ngā taha e rua.
15x^{2}-8x-12=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-8 ab=15\left(-12\right)=-180
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 15x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Tātaihia te tapeke mō ia takirua.
a=-18 b=10
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(15x^{2}-18x\right)+\left(10x-12\right)
Tuhia anō te 15x^{2}-8x-12 hei \left(15x^{2}-18x\right)+\left(10x-12\right).
3x\left(5x-6\right)+2\left(5x-6\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(5x-6\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi 5x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{6}{5} x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te 5x-6=0 me te 3x+2=0.
15x^{2}-12-8x=0
Tangohia te 8x mai i ngā taha e rua.
15x^{2}-8x-12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15\left(-12\right)}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, -8 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15\left(-12\right)}}{2\times 15}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-60\left(-12\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-\left(-8\right)±\sqrt{64+720}}{2\times 15}
Whakareatia -60 ki te -12.
x=\frac{-\left(-8\right)±\sqrt{784}}{2\times 15}
Tāpiri 64 ki te 720.
x=\frac{-\left(-8\right)±28}{2\times 15}
Tuhia te pūtakerua o te 784.
x=\frac{8±28}{2\times 15}
Ko te tauaro o -8 ko 8.
x=\frac{8±28}{30}
Whakareatia 2 ki te 15.
x=\frac{36}{30}
Nā, me whakaoti te whārite x=\frac{8±28}{30} ina he tāpiri te ±. Tāpiri 8 ki te 28.
x=\frac{6}{5}
Whakahekea te hautanga \frac{36}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{20}{30}
Nā, me whakaoti te whārite x=\frac{8±28}{30} ina he tango te ±. Tango 28 mai i 8.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-20}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=\frac{6}{5} x=-\frac{2}{3}
Kua oti te whārite te whakatau.
15x^{2}-12-8x=0
Tangohia te 8x mai i ngā taha e rua.
15x^{2}-8x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{15x^{2}-8x}{15}=\frac{12}{15}
Whakawehea ngā taha e rua ki te 15.
x^{2}-\frac{8}{15}x=\frac{12}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x^{2}-\frac{8}{15}x=\frac{4}{5}
Whakahekea te hautanga \frac{12}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{8}{15}x+\left(-\frac{4}{15}\right)^{2}=\frac{4}{5}+\left(-\frac{4}{15}\right)^{2}
Whakawehea te -\frac{8}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{15}. Nā, tāpiria te pūrua o te -\frac{4}{15} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{4}{5}+\frac{16}{225}
Pūruatia -\frac{4}{15} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{196}{225}
Tāpiri \frac{4}{5} ki te \frac{16}{225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{4}{15}\right)^{2}=\frac{196}{225}
Tauwehea x^{2}-\frac{8}{15}x+\frac{16}{225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{15}\right)^{2}}=\sqrt{\frac{196}{225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{15}=\frac{14}{15} x-\frac{4}{15}=-\frac{14}{15}
Whakarūnātia.
x=\frac{6}{5} x=-\frac{2}{3}
Me tāpiri \frac{4}{15} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}