Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
x=\frac{2}{5}=0.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=4 ab=15\left(-4\right)=-60
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 15x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Tātaihia te tapeke mō ia takirua.
a=-6 b=10
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(15x^{2}-6x\right)+\left(10x-4\right)
Tuhia anō te 15x^{2}+4x-4 hei \left(15x^{2}-6x\right)+\left(10x-4\right).
3x\left(5x-2\right)+2\left(5x-2\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(5x-2\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi 5x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{5} x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te 5x-2=0 me te 3x+2=0.
15x^{2}+4x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 15\left(-4\right)}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, 4 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 15\left(-4\right)}}{2\times 15}
Pūrua 4.
x=\frac{-4±\sqrt{16-60\left(-4\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-4±\sqrt{16+240}}{2\times 15}
Whakareatia -60 ki te -4.
x=\frac{-4±\sqrt{256}}{2\times 15}
Tāpiri 16 ki te 240.
x=\frac{-4±16}{2\times 15}
Tuhia te pūtakerua o te 256.
x=\frac{-4±16}{30}
Whakareatia 2 ki te 15.
x=\frac{12}{30}
Nā, me whakaoti te whārite x=\frac{-4±16}{30} ina he tāpiri te ±. Tāpiri -4 ki te 16.
x=\frac{2}{5}
Whakahekea te hautanga \frac{12}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{20}{30}
Nā, me whakaoti te whārite x=\frac{-4±16}{30} ina he tango te ±. Tango 16 mai i -4.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-20}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=\frac{2}{5} x=-\frac{2}{3}
Kua oti te whārite te whakatau.
15x^{2}+4x-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
15x^{2}+4x-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
15x^{2}+4x=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
15x^{2}+4x=4
Tango -4 mai i 0.
\frac{15x^{2}+4x}{15}=\frac{4}{15}
Whakawehea ngā taha e rua ki te 15.
x^{2}+\frac{4}{15}x=\frac{4}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x^{2}+\frac{4}{15}x+\left(\frac{2}{15}\right)^{2}=\frac{4}{15}+\left(\frac{2}{15}\right)^{2}
Whakawehea te \frac{4}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{15}. Nā, tāpiria te pūrua o te \frac{2}{15} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{4}{15}x+\frac{4}{225}=\frac{4}{15}+\frac{4}{225}
Pūruatia \frac{2}{15} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{4}{15}x+\frac{4}{225}=\frac{64}{225}
Tāpiri \frac{4}{15} ki te \frac{4}{225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{2}{15}\right)^{2}=\frac{64}{225}
Tauwehea x^{2}+\frac{4}{15}x+\frac{4}{225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{15}\right)^{2}}=\sqrt{\frac{64}{225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{2}{15}=\frac{8}{15} x+\frac{2}{15}=-\frac{8}{15}
Whakarūnātia.
x=\frac{2}{5} x=-\frac{2}{3}
Me tango \frac{2}{15} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}