Whakaoti mō x
x=\frac{\sqrt{1174}-22}{15}\approx 0.817578893
x=\frac{-\sqrt{1174}-22}{15}\approx -3.750912227
Graph
Tohaina
Kua tāruatia ki te papatopenga
15x^{2}+44x-46=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-44±\sqrt{44^{2}-4\times 15\left(-46\right)}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, 44 mō b, me -46 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-44±\sqrt{1936-4\times 15\left(-46\right)}}{2\times 15}
Pūrua 44.
x=\frac{-44±\sqrt{1936-60\left(-46\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-44±\sqrt{1936+2760}}{2\times 15}
Whakareatia -60 ki te -46.
x=\frac{-44±\sqrt{4696}}{2\times 15}
Tāpiri 1936 ki te 2760.
x=\frac{-44±2\sqrt{1174}}{2\times 15}
Tuhia te pūtakerua o te 4696.
x=\frac{-44±2\sqrt{1174}}{30}
Whakareatia 2 ki te 15.
x=\frac{2\sqrt{1174}-44}{30}
Nā, me whakaoti te whārite x=\frac{-44±2\sqrt{1174}}{30} ina he tāpiri te ±. Tāpiri -44 ki te 2\sqrt{1174}.
x=\frac{\sqrt{1174}-22}{15}
Whakawehe -44+2\sqrt{1174} ki te 30.
x=\frac{-2\sqrt{1174}-44}{30}
Nā, me whakaoti te whārite x=\frac{-44±2\sqrt{1174}}{30} ina he tango te ±. Tango 2\sqrt{1174} mai i -44.
x=\frac{-\sqrt{1174}-22}{15}
Whakawehe -44-2\sqrt{1174} ki te 30.
x=\frac{\sqrt{1174}-22}{15} x=\frac{-\sqrt{1174}-22}{15}
Kua oti te whārite te whakatau.
15x^{2}+44x-46=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
15x^{2}+44x-46-\left(-46\right)=-\left(-46\right)
Me tāpiri 46 ki ngā taha e rua o te whārite.
15x^{2}+44x=-\left(-46\right)
Mā te tango i te -46 i a ia ake anō ka toe ko te 0.
15x^{2}+44x=46
Tango -46 mai i 0.
\frac{15x^{2}+44x}{15}=\frac{46}{15}
Whakawehea ngā taha e rua ki te 15.
x^{2}+\frac{44}{15}x=\frac{46}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x^{2}+\frac{44}{15}x+\left(\frac{22}{15}\right)^{2}=\frac{46}{15}+\left(\frac{22}{15}\right)^{2}
Whakawehea te \frac{44}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{22}{15}. Nā, tāpiria te pūrua o te \frac{22}{15} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{44}{15}x+\frac{484}{225}=\frac{46}{15}+\frac{484}{225}
Pūruatia \frac{22}{15} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{44}{15}x+\frac{484}{225}=\frac{1174}{225}
Tāpiri \frac{46}{15} ki te \frac{484}{225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{22}{15}\right)^{2}=\frac{1174}{225}
Tauwehea x^{2}+\frac{44}{15}x+\frac{484}{225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{22}{15}\right)^{2}}=\sqrt{\frac{1174}{225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{22}{15}=\frac{\sqrt{1174}}{15} x+\frac{22}{15}=-\frac{\sqrt{1174}}{15}
Whakarūnātia.
x=\frac{\sqrt{1174}-22}{15} x=\frac{-\sqrt{1174}-22}{15}
Me tango \frac{22}{15} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}