Whakaoti mō x
x=\frac{\sqrt{240009}-3}{40000}\approx 0.012172678
x=\frac{-\sqrt{240009}-3}{40000}\approx -0.012322678
Graph
Tohaina
Kua tāruatia ki te papatopenga
15\times 10^{-5}\left(-x+1\right)=xx
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+1.
15\times 10^{-5}\left(-x+1\right)=x^{2}
Whakareatia te x ki te x, ka x^{2}.
15\times \frac{1}{100000}\left(-x+1\right)=x^{2}
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
\frac{3}{20000}\left(-x+1\right)=x^{2}
Whakareatia te 15 ki te \frac{1}{100000}, ka \frac{3}{20000}.
-\frac{3}{20000}x+\frac{3}{20000}=x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{20000} ki te -x+1.
-\frac{3}{20000}x+\frac{3}{20000}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}-\frac{3}{20000}x+\frac{3}{20000}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\left(-\frac{3}{20000}\right)^{2}-4\left(-1\right)\times \frac{3}{20000}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -\frac{3}{20000} mō b, me \frac{3}{20000} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\frac{9}{400000000}-4\left(-1\right)\times \frac{3}{20000}}}{2\left(-1\right)}
Pūruatia -\frac{3}{20000} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\frac{9}{400000000}+4\times \frac{3}{20000}}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\frac{9}{400000000}+\frac{3}{5000}}}{2\left(-1\right)}
Whakareatia 4 ki te \frac{3}{20000}.
x=\frac{-\left(-\frac{3}{20000}\right)±\sqrt{\frac{240009}{400000000}}}{2\left(-1\right)}
Tāpiri \frac{9}{400000000} ki te \frac{3}{5000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{3}{20000}\right)±\frac{\sqrt{240009}}{20000}}{2\left(-1\right)}
Tuhia te pūtakerua o te \frac{240009}{400000000}.
x=\frac{\frac{3}{20000}±\frac{\sqrt{240009}}{20000}}{2\left(-1\right)}
Ko te tauaro o -\frac{3}{20000} ko \frac{3}{20000}.
x=\frac{\frac{3}{20000}±\frac{\sqrt{240009}}{20000}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{240009}+3}{-2\times 20000}
Nā, me whakaoti te whārite x=\frac{\frac{3}{20000}±\frac{\sqrt{240009}}{20000}}{-2} ina he tāpiri te ±. Tāpiri \frac{3}{20000} ki te \frac{\sqrt{240009}}{20000}.
x=\frac{-\sqrt{240009}-3}{40000}
Whakawehe \frac{3+\sqrt{240009}}{20000} ki te -2.
x=\frac{3-\sqrt{240009}}{-2\times 20000}
Nā, me whakaoti te whārite x=\frac{\frac{3}{20000}±\frac{\sqrt{240009}}{20000}}{-2} ina he tango te ±. Tango \frac{\sqrt{240009}}{20000} mai i \frac{3}{20000}.
x=\frac{\sqrt{240009}-3}{40000}
Whakawehe \frac{3-\sqrt{240009}}{20000} ki te -2.
x=\frac{-\sqrt{240009}-3}{40000} x=\frac{\sqrt{240009}-3}{40000}
Kua oti te whārite te whakatau.
15\times 10^{-5}\left(-x+1\right)=xx
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+1.
15\times 10^{-5}\left(-x+1\right)=x^{2}
Whakareatia te x ki te x, ka x^{2}.
15\times \frac{1}{100000}\left(-x+1\right)=x^{2}
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
\frac{3}{20000}\left(-x+1\right)=x^{2}
Whakareatia te 15 ki te \frac{1}{100000}, ka \frac{3}{20000}.
-\frac{3}{20000}x+\frac{3}{20000}=x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{20000} ki te -x+1.
-\frac{3}{20000}x+\frac{3}{20000}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-\frac{3}{20000}x-x^{2}=-\frac{3}{20000}
Tangohia te \frac{3}{20000} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}-\frac{3}{20000}x=-\frac{3}{20000}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-\frac{3}{20000}x}{-1}=-\frac{\frac{3}{20000}}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{\frac{3}{20000}}{-1}\right)x=-\frac{\frac{3}{20000}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+\frac{3}{20000}x=-\frac{\frac{3}{20000}}{-1}
Whakawehe -\frac{3}{20000} ki te -1.
x^{2}+\frac{3}{20000}x=\frac{3}{20000}
Whakawehe -\frac{3}{20000} ki te -1.
x^{2}+\frac{3}{20000}x+\left(\frac{3}{40000}\right)^{2}=\frac{3}{20000}+\left(\frac{3}{40000}\right)^{2}
Whakawehea te \frac{3}{20000}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{40000}. Nā, tāpiria te pūrua o te \frac{3}{40000} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{20000}x+\frac{9}{1600000000}=\frac{3}{20000}+\frac{9}{1600000000}
Pūruatia \frac{3}{40000} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{20000}x+\frac{9}{1600000000}=\frac{240009}{1600000000}
Tāpiri \frac{3}{20000} ki te \frac{9}{1600000000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{40000}\right)^{2}=\frac{240009}{1600000000}
Tauwehea x^{2}+\frac{3}{20000}x+\frac{9}{1600000000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{40000}\right)^{2}}=\sqrt{\frac{240009}{1600000000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{40000}=\frac{\sqrt{240009}}{40000} x+\frac{3}{40000}=-\frac{\sqrt{240009}}{40000}
Whakarūnātia.
x=\frac{\sqrt{240009}-3}{40000} x=\frac{-\sqrt{240009}-3}{40000}
Me tango \frac{3}{40000} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}