Whakaoti mō x
x = \frac{\sqrt{769} + 7}{30} \approx 1.157694975
x=\frac{7-\sqrt{769}}{30}\approx -0.691028308
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(15-15x\right)\left(1+x\right)+7x-3=0
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te 1-x.
15-15x^{2}+7x-3=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 15-15x ki te 1+x ka whakakotahi i ngā kupu rite.
12-15x^{2}+7x=0
Tangohia te 3 i te 15, ka 12.
-15x^{2}+7x+12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\left(-15\right)\times 12}}{2\left(-15\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -15 mō a, 7 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-15\right)\times 12}}{2\left(-15\right)}
Pūrua 7.
x=\frac{-7±\sqrt{49+60\times 12}}{2\left(-15\right)}
Whakareatia -4 ki te -15.
x=\frac{-7±\sqrt{49+720}}{2\left(-15\right)}
Whakareatia 60 ki te 12.
x=\frac{-7±\sqrt{769}}{2\left(-15\right)}
Tāpiri 49 ki te 720.
x=\frac{-7±\sqrt{769}}{-30}
Whakareatia 2 ki te -15.
x=\frac{\sqrt{769}-7}{-30}
Nā, me whakaoti te whārite x=\frac{-7±\sqrt{769}}{-30} ina he tāpiri te ±. Tāpiri -7 ki te \sqrt{769}.
x=\frac{7-\sqrt{769}}{30}
Whakawehe -7+\sqrt{769} ki te -30.
x=\frac{-\sqrt{769}-7}{-30}
Nā, me whakaoti te whārite x=\frac{-7±\sqrt{769}}{-30} ina he tango te ±. Tango \sqrt{769} mai i -7.
x=\frac{\sqrt{769}+7}{30}
Whakawehe -7-\sqrt{769} ki te -30.
x=\frac{7-\sqrt{769}}{30} x=\frac{\sqrt{769}+7}{30}
Kua oti te whārite te whakatau.
\left(15-15x\right)\left(1+x\right)+7x-3=0
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te 1-x.
15-15x^{2}+7x-3=0
Whakamahia te āhuatanga tuaritanga hei whakarea te 15-15x ki te 1+x ka whakakotahi i ngā kupu rite.
12-15x^{2}+7x=0
Tangohia te 3 i te 15, ka 12.
-15x^{2}+7x=-12
Tangohia te 12 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-15x^{2}+7x}{-15}=-\frac{12}{-15}
Whakawehea ngā taha e rua ki te -15.
x^{2}+\frac{7}{-15}x=-\frac{12}{-15}
Mā te whakawehe ki te -15 ka wetekia te whakareanga ki te -15.
x^{2}-\frac{7}{15}x=-\frac{12}{-15}
Whakawehe 7 ki te -15.
x^{2}-\frac{7}{15}x=\frac{4}{5}
Whakahekea te hautanga \frac{-12}{-15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{7}{15}x+\left(-\frac{7}{30}\right)^{2}=\frac{4}{5}+\left(-\frac{7}{30}\right)^{2}
Whakawehea te -\frac{7}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{30}. Nā, tāpiria te pūrua o te -\frac{7}{30} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{15}x+\frac{49}{900}=\frac{4}{5}+\frac{49}{900}
Pūruatia -\frac{7}{30} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{15}x+\frac{49}{900}=\frac{769}{900}
Tāpiri \frac{4}{5} ki te \frac{49}{900} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{30}\right)^{2}=\frac{769}{900}
Tauwehea x^{2}-\frac{7}{15}x+\frac{49}{900}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{30}\right)^{2}}=\sqrt{\frac{769}{900}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{30}=\frac{\sqrt{769}}{30} x-\frac{7}{30}=-\frac{\sqrt{769}}{30}
Whakarūnātia.
x=\frac{\sqrt{769}+7}{30} x=\frac{7-\sqrt{769}}{30}
Me tāpiri \frac{7}{30} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}