Aromātai
80\sqrt{5}\approx 178.8854382
Tohaina
Kua tāruatia ki te papatopenga
15\times 2\sqrt{5}-0\times 2\sqrt{45b^{7}}+5\sqrt{500}-0\times 8\sqrt{80b^{7}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
30\sqrt{5}-0\times 2\sqrt{45b^{7}}+5\sqrt{500}-0\times 8\sqrt{80b^{7}}
Whakareatia te 15 ki te 2, ka 30.
30\sqrt{5}-0\sqrt{45b^{7}}+5\sqrt{500}-0\times 8\sqrt{80b^{7}}
Whakareatia te 0 ki te 2, ka 0.
30\sqrt{5}-0+5\sqrt{500}-0\times 8\sqrt{80b^{7}}
Ko te tau i whakarea ki te kore ka hua ko te kore.
30\sqrt{5}-0+5\times 10\sqrt{5}-0\times 8\sqrt{80b^{7}}
Tauwehea te 500=10^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 5} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{5}. Tuhia te pūtakerua o te 10^{2}.
30\sqrt{5}-0+50\sqrt{5}-0\times 8\sqrt{80b^{7}}
Whakareatia te 5 ki te 10, ka 50.
30\sqrt{5}-0+50\sqrt{5}-0\sqrt{80b^{7}}
Whakareatia te 0 ki te 8, ka 0.
30\sqrt{5}-0+50\sqrt{5}-0
Ko te tau i whakarea ki te kore ka hua ko te kore.
30\sqrt{5}+0+50\sqrt{5}-0
Whakareatia te -1 ki te 0, ka 0.
30\sqrt{5}+50\sqrt{5}-0
Ko te tau i tāpiria he kore ka hua koia tonu.
80\sqrt{5}-0
Pahekotia te 30\sqrt{5} me 50\sqrt{5}, ka 80\sqrt{5}.
80\sqrt{5}+0
Whakareatia te -1 ki te 0, ka 0.
80\sqrt{5}
Ko te tau i tāpiria he kore ka hua koia tonu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}