Aromātai
-\frac{63}{13}\approx -4.846153846
Tauwehe
-\frac{63}{13} = -4\frac{11}{13} = -4.846153846153846
Tohaina
Kua tāruatia ki te papatopenga
\frac{195+9}{13}-\frac{20\times 13+7}{13}
Whakareatia te 15 ki te 13, ka 195.
\frac{204}{13}-\frac{20\times 13+7}{13}
Tāpirihia te 195 ki te 9, ka 204.
\frac{204}{13}-\frac{260+7}{13}
Whakareatia te 20 ki te 13, ka 260.
\frac{204}{13}-\frac{267}{13}
Tāpirihia te 260 ki te 7, ka 267.
\frac{204-267}{13}
Tā te mea he rite te tauraro o \frac{204}{13} me \frac{267}{13}, me tango rāua mā te tango i ō raua taurunga.
-\frac{63}{13}
Tangohia te 267 i te 204, ka -63.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}