Aromātai
\frac{97}{5}=19.4
Tauwehe
\frac{97}{5} = 19\frac{2}{5} = 19.4
Tohaina
Kua tāruatia ki te papatopenga
\frac{150+7}{10}-\frac{2\times 10+4}{10}+\frac{6\times 10+1}{10}
Whakareatia te 15 ki te 10, ka 150.
\frac{157}{10}-\frac{2\times 10+4}{10}+\frac{6\times 10+1}{10}
Tāpirihia te 150 ki te 7, ka 157.
\frac{157}{10}-\frac{20+4}{10}+\frac{6\times 10+1}{10}
Whakareatia te 2 ki te 10, ka 20.
\frac{157}{10}-\frac{24}{10}+\frac{6\times 10+1}{10}
Tāpirihia te 20 ki te 4, ka 24.
\frac{157-24}{10}+\frac{6\times 10+1}{10}
Tā te mea he rite te tauraro o \frac{157}{10} me \frac{24}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{133}{10}+\frac{6\times 10+1}{10}
Tangohia te 24 i te 157, ka 133.
\frac{133}{10}+\frac{60+1}{10}
Whakareatia te 6 ki te 10, ka 60.
\frac{133}{10}+\frac{61}{10}
Tāpirihia te 60 ki te 1, ka 61.
\frac{133+61}{10}
Tā te mea he rite te tauraro o \frac{133}{10} me \frac{61}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{194}{10}
Tāpirihia te 133 ki te 61, ka 194.
\frac{97}{5}
Whakahekea te hautanga \frac{194}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}