Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\frac{225+13}{15}-21.34+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Whakareatia te 15 ki te 15, ka 225.
\frac{238}{15}-21.34+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Tāpirihia te 225 ki te 13, ka 238.
\frac{238}{15}-\frac{1067}{50}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Me tahuri ki tau ā-ira 21.34 ki te hautau \frac{2134}{100}. Whakahekea te hautanga \frac{2134}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2380}{150}-\frac{3201}{150}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Ko te maha noa iti rawa atu o 15 me 50 ko 150. Me tahuri \frac{238}{15} me \frac{1067}{50} ki te hautau me te tautūnga 150.
\frac{2380-3201}{150}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Tā te mea he rite te tauraro o \frac{2380}{150} me \frac{3201}{150}, me tango rāua mā te tango i ō raua taurunga.
-\frac{821}{150}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Tangohia te 3201 i te 2380, ka -821.
-\frac{821}{150}+\frac{210+2}{15}-\frac{6\times 50+33}{50}
Whakareatia te 14 ki te 15, ka 210.
-\frac{821}{150}+\frac{212}{15}-\frac{6\times 50+33}{50}
Tāpirihia te 210 ki te 2, ka 212.
-\frac{821}{150}+\frac{2120}{150}-\frac{6\times 50+33}{50}
Ko te maha noa iti rawa atu o 150 me 15 ko 150. Me tahuri -\frac{821}{150} me \frac{212}{15} ki te hautau me te tautūnga 150.
\frac{-821+2120}{150}-\frac{6\times 50+33}{50}
Tā te mea he rite te tauraro o -\frac{821}{150} me \frac{2120}{150}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1299}{150}-\frac{6\times 50+33}{50}
Tāpirihia te -821 ki te 2120, ka 1299.
\frac{433}{50}-\frac{6\times 50+33}{50}
Whakahekea te hautanga \frac{1299}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{433}{50}-\frac{300+33}{50}
Whakareatia te 6 ki te 50, ka 300.
\frac{433}{50}-\frac{333}{50}
Tāpirihia te 300 ki te 33, ka 333.
\frac{433-333}{50}
Tā te mea he rite te tauraro o \frac{433}{50} me \frac{333}{50}, me tango rāua mā te tango i ō raua taurunga.
\frac{100}{50}
Tangohia te 333 i te 433, ka 100.
2
Whakawehea te 100 ki te 50, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}