Aromātai
-22
Tauwehe
-22
Tohaina
Kua tāruatia ki te papatopenga
15\times \frac{8}{5}\left(-\frac{5}{4}\right)-\left(-8\right)
Whakawehe 15 ki te \frac{5}{8} mā te whakarea 15 ki te tau huripoki o \frac{5}{8}.
\frac{15\times 8}{5}\left(-\frac{5}{4}\right)-\left(-8\right)
Tuhia te 15\times \frac{8}{5} hei hautanga kotahi.
\frac{120}{5}\left(-\frac{5}{4}\right)-\left(-8\right)
Whakareatia te 15 ki te 8, ka 120.
24\left(-\frac{5}{4}\right)-\left(-8\right)
Whakawehea te 120 ki te 5, kia riro ko 24.
\frac{24\left(-5\right)}{4}-\left(-8\right)
Tuhia te 24\left(-\frac{5}{4}\right) hei hautanga kotahi.
\frac{-120}{4}-\left(-8\right)
Whakareatia te 24 ki te -5, ka -120.
-30-\left(-8\right)
Whakawehea te -120 ki te 4, kia riro ko -30.
-30+8
Ko te tauaro o -8 ko 8.
-22
Tāpirihia te -30 ki te 8, ka -22.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}