Whakaoti mō h
h = \frac{3}{2} = 1\frac{1}{2} = 1.5
h = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Tohaina
Kua tāruatia ki te papatopenga
8h^{2}-2h=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8h^{2}-2h-15=0
Tangohia te 15 mai i ngā taha e rua.
a+b=-2 ab=8\left(-15\right)=-120
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 8h^{2}+ah+bh-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Tātaihia te tapeke mō ia takirua.
a=-12 b=10
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(8h^{2}-12h\right)+\left(10h-15\right)
Tuhia anō te 8h^{2}-2h-15 hei \left(8h^{2}-12h\right)+\left(10h-15\right).
4h\left(2h-3\right)+5\left(2h-3\right)
Tauwehea te 4h i te tuatahi me te 5 i te rōpū tuarua.
\left(2h-3\right)\left(4h+5\right)
Whakatauwehea atu te kīanga pātahi 2h-3 mā te whakamahi i te āhuatanga tātai tohatoha.
h=\frac{3}{2} h=-\frac{5}{4}
Hei kimi otinga whārite, me whakaoti te 2h-3=0 me te 4h+5=0.
8h^{2}-2h=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8h^{2}-2h-15=0
Tangohia te 15 mai i ngā taha e rua.
h=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 8\left(-15\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -2 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-2\right)±\sqrt{4-4\times 8\left(-15\right)}}{2\times 8}
Pūrua -2.
h=\frac{-\left(-2\right)±\sqrt{4-32\left(-15\right)}}{2\times 8}
Whakareatia -4 ki te 8.
h=\frac{-\left(-2\right)±\sqrt{4+480}}{2\times 8}
Whakareatia -32 ki te -15.
h=\frac{-\left(-2\right)±\sqrt{484}}{2\times 8}
Tāpiri 4 ki te 480.
h=\frac{-\left(-2\right)±22}{2\times 8}
Tuhia te pūtakerua o te 484.
h=\frac{2±22}{2\times 8}
Ko te tauaro o -2 ko 2.
h=\frac{2±22}{16}
Whakareatia 2 ki te 8.
h=\frac{24}{16}
Nā, me whakaoti te whārite h=\frac{2±22}{16} ina he tāpiri te ±. Tāpiri 2 ki te 22.
h=\frac{3}{2}
Whakahekea te hautanga \frac{24}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
h=-\frac{20}{16}
Nā, me whakaoti te whārite h=\frac{2±22}{16} ina he tango te ±. Tango 22 mai i 2.
h=-\frac{5}{4}
Whakahekea te hautanga \frac{-20}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
h=\frac{3}{2} h=-\frac{5}{4}
Kua oti te whārite te whakatau.
8h^{2}-2h=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{8h^{2}-2h}{8}=\frac{15}{8}
Whakawehea ngā taha e rua ki te 8.
h^{2}+\left(-\frac{2}{8}\right)h=\frac{15}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
h^{2}-\frac{1}{4}h=\frac{15}{8}
Whakahekea te hautanga \frac{-2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
h^{2}-\frac{1}{4}h+\left(-\frac{1}{8}\right)^{2}=\frac{15}{8}+\left(-\frac{1}{8}\right)^{2}
Whakawehea te -\frac{1}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{8}. Nā, tāpiria te pūrua o te -\frac{1}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
h^{2}-\frac{1}{4}h+\frac{1}{64}=\frac{15}{8}+\frac{1}{64}
Pūruatia -\frac{1}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
h^{2}-\frac{1}{4}h+\frac{1}{64}=\frac{121}{64}
Tāpiri \frac{15}{8} ki te \frac{1}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(h-\frac{1}{8}\right)^{2}=\frac{121}{64}
Tauwehea h^{2}-\frac{1}{4}h+\frac{1}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{1}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
h-\frac{1}{8}=\frac{11}{8} h-\frac{1}{8}=-\frac{11}{8}
Whakarūnātia.
h=\frac{3}{2} h=-\frac{5}{4}
Me tāpiri \frac{1}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}