Whakaoti mō b
b = \frac{13}{2} = 6\frac{1}{2} = 6.5
Tohaina
Kua tāruatia ki te papatopenga
\left(-b+8\right)\times 15+6-3b=6\left(-b+8\right)
Tē taea kia ōrite te tāupe b ki 8 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -b+8.
-15b+120+6-3b=6\left(-b+8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -b+8 ki te 15.
-15b+126-3b=6\left(-b+8\right)
Tāpirihia te 120 ki te 6, ka 126.
-18b+126=6\left(-b+8\right)
Pahekotia te -15b me -3b, ka -18b.
-18b+126=-6b+48
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te -b+8.
-18b+126+6b=48
Me tāpiri te 6b ki ngā taha e rua.
-12b+126=48
Pahekotia te -18b me 6b, ka -12b.
-12b=48-126
Tangohia te 126 mai i ngā taha e rua.
-12b=-78
Tangohia te 126 i te 48, ka -78.
b=\frac{-78}{-12}
Whakawehea ngā taha e rua ki te -12.
b=\frac{13}{2}
Whakahekea te hautanga \frac{-78}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}