Aromātai
\frac{41}{20}=2.05
Tauwehe
\frac{41}{2 ^ {2} \cdot 5} = 2\frac{1}{20} = 2.05
Tohaina
Kua tāruatia ki te papatopenga
\frac{75+2}{5}-\frac{6\times 5+3}{5}-\frac{6\times 4+3}{4}
Whakareatia te 15 ki te 5, ka 75.
\frac{77}{5}-\frac{6\times 5+3}{5}-\frac{6\times 4+3}{4}
Tāpirihia te 75 ki te 2, ka 77.
\frac{77}{5}-\frac{30+3}{5}-\frac{6\times 4+3}{4}
Whakareatia te 6 ki te 5, ka 30.
\frac{77}{5}-\frac{33}{5}-\frac{6\times 4+3}{4}
Tāpirihia te 30 ki te 3, ka 33.
\frac{77-33}{5}-\frac{6\times 4+3}{4}
Tā te mea he rite te tauraro o \frac{77}{5} me \frac{33}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{44}{5}-\frac{6\times 4+3}{4}
Tangohia te 33 i te 77, ka 44.
\frac{44}{5}-\frac{24+3}{4}
Whakareatia te 6 ki te 4, ka 24.
\frac{44}{5}-\frac{27}{4}
Tāpirihia te 24 ki te 3, ka 27.
\frac{176}{20}-\frac{135}{20}
Ko te maha noa iti rawa atu o 5 me 4 ko 20. Me tahuri \frac{44}{5} me \frac{27}{4} ki te hautau me te tautūnga 20.
\frac{176-135}{20}
Tā te mea he rite te tauraro o \frac{176}{20} me \frac{135}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{41}{20}
Tangohia te 135 i te 176, ka 41.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}