14x \times 80 \% +(210-14x) \times 90 \% =182
Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
14x\times \frac{4}{5}+\left(210-14x\right)\times \frac{90}{100}=182
Whakahekea te hautanga \frac{80}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{14\times 4}{5}x+\left(210-14x\right)\times \frac{90}{100}=182
Tuhia te 14\times \frac{4}{5} hei hautanga kotahi.
\frac{56}{5}x+\left(210-14x\right)\times \frac{90}{100}=182
Whakareatia te 14 ki te 4, ka 56.
\frac{56}{5}x+\left(210-14x\right)\times \frac{9}{10}=182
Whakahekea te hautanga \frac{90}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{56}{5}x+210\times \frac{9}{10}-14x\times \frac{9}{10}=182
Whakamahia te āhuatanga tohatoha hei whakarea te 210-14x ki te \frac{9}{10}.
\frac{56}{5}x+\frac{210\times 9}{10}-14x\times \frac{9}{10}=182
Tuhia te 210\times \frac{9}{10} hei hautanga kotahi.
\frac{56}{5}x+\frac{1890}{10}-14x\times \frac{9}{10}=182
Whakareatia te 210 ki te 9, ka 1890.
\frac{56}{5}x+189-14x\times \frac{9}{10}=182
Whakawehea te 1890 ki te 10, kia riro ko 189.
\frac{56}{5}x+189+\frac{-14\times 9}{10}x=182
Tuhia te -14\times \frac{9}{10} hei hautanga kotahi.
\frac{56}{5}x+189+\frac{-126}{10}x=182
Whakareatia te -14 ki te 9, ka -126.
\frac{56}{5}x+189-\frac{63}{5}x=182
Whakahekea te hautanga \frac{-126}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{7}{5}x+189=182
Pahekotia te \frac{56}{5}x me -\frac{63}{5}x, ka -\frac{7}{5}x.
-\frac{7}{5}x=182-189
Tangohia te 189 mai i ngā taha e rua.
-\frac{7}{5}x=-7
Tangohia te 189 i te 182, ka -7.
x=-7\left(-\frac{5}{7}\right)
Me whakarea ngā taha e rua ki te -\frac{5}{7}, te tau utu o -\frac{7}{5}.
x=5
Whakareatia -7 ki te -\frac{5}{7}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}