Whakaoti mō m
m=\frac{60\lambda }{29}
Whakaoti mō λ
\lambda =\frac{29m}{60}
Tohaina
Kua tāruatia ki te papatopenga
1450m=5\lambda \times 600
Whakareatia ngā taha e rua o te whārite ki te 5.
1450m=3000\lambda
Whakareatia te 5 ki te 600, ka 3000.
\frac{1450m}{1450}=\frac{3000\lambda }{1450}
Whakawehea ngā taha e rua ki te 1450.
m=\frac{3000\lambda }{1450}
Mā te whakawehe ki te 1450 ka wetekia te whakareanga ki te 1450.
m=\frac{60\lambda }{29}
Whakawehe 3000\lambda ki te 1450.
1450m=5\lambda \times 600
Whakareatia ngā taha e rua o te whārite ki te 5.
1450m=3000\lambda
Whakareatia te 5 ki te 600, ka 3000.
3000\lambda =1450m
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{3000\lambda }{3000}=\frac{1450m}{3000}
Whakawehea ngā taha e rua ki te 3000.
\lambda =\frac{1450m}{3000}
Mā te whakawehe ki te 3000 ka wetekia te whakareanga ki te 3000.
\lambda =\frac{29m}{60}
Whakawehe 1450m ki te 3000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}