Aromātai
-990
Tauwehe
-990
Tohaina
Kua tāruatia ki te papatopenga
\frac{1440\times 23}{48}-1440\times \frac{25}{48}\times 0\times 48-1440\times \frac{35}{48}\times \frac{8}{5}
Tuhia te 1440\times \frac{23}{48} hei hautanga kotahi.
\frac{33120}{48}-1440\times \frac{25}{48}\times 0\times 48-1440\times \frac{35}{48}\times \frac{8}{5}
Whakareatia te 1440 ki te 23, ka 33120.
690-1440\times \frac{25}{48}\times 0\times 48-1440\times \frac{35}{48}\times \frac{8}{5}
Whakawehea te 33120 ki te 48, kia riro ko 690.
690-\frac{1440\times 25}{48}\times 0\times 48-1440\times \frac{35}{48}\times \frac{8}{5}
Tuhia te 1440\times \frac{25}{48} hei hautanga kotahi.
690-\frac{36000}{48}\times 0\times 48-1440\times \frac{35}{48}\times \frac{8}{5}
Whakareatia te 1440 ki te 25, ka 36000.
690-750\times 0\times 48-1440\times \frac{35}{48}\times \frac{8}{5}
Whakawehea te 36000 ki te 48, kia riro ko 750.
690-0\times 48-1440\times \frac{35}{48}\times \frac{8}{5}
Whakareatia te 750 ki te 0, ka 0.
690-0-1440\times \frac{35}{48}\times \frac{8}{5}
Whakareatia te 0 ki te 48, ka 0.
690-1440\times \frac{35}{48}\times \frac{8}{5}
Tangohia te 0 i te 690, ka 690.
690-\frac{1440\times 35}{48}\times \frac{8}{5}
Tuhia te 1440\times \frac{35}{48} hei hautanga kotahi.
690-\frac{50400}{48}\times \frac{8}{5}
Whakareatia te 1440 ki te 35, ka 50400.
690-1050\times \frac{8}{5}
Whakawehea te 50400 ki te 48, kia riro ko 1050.
690-\frac{1050\times 8}{5}
Tuhia te 1050\times \frac{8}{5} hei hautanga kotahi.
690-\frac{8400}{5}
Whakareatia te 1050 ki te 8, ka 8400.
690-1680
Whakawehea te 8400 ki te 5, kia riro ko 1680.
-990
Tangohia te 1680 i te 690, ka -990.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}