Whakaoti mō x
x = \frac{100}{37} = 2\frac{26}{37} \approx 2.702702703
Graph
Tohaina
Kua tāruatia ki te papatopenga
720000\left(1+\frac{x}{100}\right)+80000\left(1-\frac{x}{250}\right)\times 25=2480000+88000x
Me whakarea ngā taha e rua o te whārite ki te 500, arā, te tauraro pātahi he tino iti rawa te kitea o 100,250.
720000+720000\times \frac{x}{100}+80000\left(1-\frac{x}{250}\right)\times 25=2480000+88000x
Whakamahia te āhuatanga tohatoha hei whakarea te 720000 ki te 1+\frac{x}{100}.
720000+7200x+80000\left(1-\frac{x}{250}\right)\times 25=2480000+88000x
Whakakorea atu te tauwehe pūnoa nui rawa 100 i roto i te 720000 me te 100.
720000+7200x+2000000\left(1-\frac{x}{250}\right)=2480000+88000x
Whakareatia te 80000 ki te 25, ka 2000000.
720000+7200x+2000000+2000000\left(-\frac{x}{250}\right)=2480000+88000x
Whakamahia te āhuatanga tohatoha hei whakarea te 2000000 ki te 1-\frac{x}{250}.
720000+7200x+2000000-8000x=2480000+88000x
Whakakorea atu te tauwehe pūnoa nui rawa 250 i roto i te 2000000 me te 250.
2720000+7200x-8000x=2480000+88000x
Tāpirihia te 720000 ki te 2000000, ka 2720000.
2720000-800x=2480000+88000x
Pahekotia te 7200x me -8000x, ka -800x.
2720000-800x-88000x=2480000
Tangohia te 88000x mai i ngā taha e rua.
2720000-88800x=2480000
Pahekotia te -800x me -88000x, ka -88800x.
-88800x=2480000-2720000
Tangohia te 2720000 mai i ngā taha e rua.
-88800x=-240000
Tangohia te 2720000 i te 2480000, ka -240000.
x=\frac{-240000}{-88800}
Whakawehea ngā taha e rua ki te -88800.
x=\frac{100}{37}
Whakahekea te hautanga \frac{-240000}{-88800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2400.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}