Whakaoti mō x
x=11
x=-13
Graph
Tohaina
Kua tāruatia ki te papatopenga
144=x^{2}+2x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1=144
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+2x+1-144=0
Tangohia te 144 mai i ngā taha e rua.
x^{2}+2x-143=0
Tangohia te 144 i te 1, ka -143.
a+b=2 ab=-143
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-143 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,143 -11,13
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -143.
-1+143=142 -11+13=2
Tātaihia te tapeke mō ia takirua.
a=-11 b=13
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x-11\right)\left(x+13\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=11 x=-13
Hei kimi otinga whārite, me whakaoti te x-11=0 me te x+13=0.
144=x^{2}+2x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1=144
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+2x+1-144=0
Tangohia te 144 mai i ngā taha e rua.
x^{2}+2x-143=0
Tangohia te 144 i te 1, ka -143.
a+b=2 ab=1\left(-143\right)=-143
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-143. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,143 -11,13
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -143.
-1+143=142 -11+13=2
Tātaihia te tapeke mō ia takirua.
a=-11 b=13
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-11x\right)+\left(13x-143\right)
Tuhia anō te x^{2}+2x-143 hei \left(x^{2}-11x\right)+\left(13x-143\right).
x\left(x-11\right)+13\left(x-11\right)
Tauwehea te x i te tuatahi me te 13 i te rōpū tuarua.
\left(x-11\right)\left(x+13\right)
Whakatauwehea atu te kīanga pātahi x-11 mā te whakamahi i te āhuatanga tātai tohatoha.
x=11 x=-13
Hei kimi otinga whārite, me whakaoti te x-11=0 me te x+13=0.
144=x^{2}+2x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1=144
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+2x+1-144=0
Tangohia te 144 mai i ngā taha e rua.
x^{2}+2x-143=0
Tangohia te 144 i te 1, ka -143.
x=\frac{-2±\sqrt{2^{2}-4\left(-143\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -143 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-143\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+572}}{2}
Whakareatia -4 ki te -143.
x=\frac{-2±\sqrt{576}}{2}
Tāpiri 4 ki te 572.
x=\frac{-2±24}{2}
Tuhia te pūtakerua o te 576.
x=\frac{22}{2}
Nā, me whakaoti te whārite x=\frac{-2±24}{2} ina he tāpiri te ±. Tāpiri -2 ki te 24.
x=11
Whakawehe 22 ki te 2.
x=-\frac{26}{2}
Nā, me whakaoti te whārite x=\frac{-2±24}{2} ina he tango te ±. Tango 24 mai i -2.
x=-13
Whakawehe -26 ki te 2.
x=11 x=-13
Kua oti te whārite te whakatau.
144=x^{2}+2x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1=144
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x+1\right)^{2}=144
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{144}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=12 x+1=-12
Whakarūnātia.
x=11 x=-13
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}