Tīpoka ki ngā ihirangi matua
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

q^{2}=\frac{25}{144}
Whakawehea ngā taha e rua ki te 144.
q^{2}-\frac{25}{144}=0
Tangohia te \frac{25}{144} mai i ngā taha e rua.
144q^{2}-25=0
Me whakarea ngā taha e rua ki te 144.
\left(12q-5\right)\left(12q+5\right)=0
Whakaarohia te 144q^{2}-25. Tuhia anō te 144q^{2}-25 hei \left(12q\right)^{2}-5^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
q=\frac{5}{12} q=-\frac{5}{12}
Hei kimi otinga whārite, me whakaoti te 12q-5=0 me te 12q+5=0.
q^{2}=\frac{25}{144}
Whakawehea ngā taha e rua ki te 144.
q=\frac{5}{12} q=-\frac{5}{12}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q^{2}=\frac{25}{144}
Whakawehea ngā taha e rua ki te 144.
q^{2}-\frac{25}{144}=0
Tangohia te \frac{25}{144} mai i ngā taha e rua.
q=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{144}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{25}{144} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\left(-\frac{25}{144}\right)}}{2}
Pūrua 0.
q=\frac{0±\sqrt{\frac{25}{36}}}{2}
Whakareatia -4 ki te -\frac{25}{144}.
q=\frac{0±\frac{5}{6}}{2}
Tuhia te pūtakerua o te \frac{25}{36}.
q=\frac{5}{12}
Nā, me whakaoti te whārite q=\frac{0±\frac{5}{6}}{2} ina he tāpiri te ±.
q=-\frac{5}{12}
Nā, me whakaoti te whārite q=\frac{0±\frac{5}{6}}{2} ina he tango te ±.
q=\frac{5}{12} q=-\frac{5}{12}
Kua oti te whārite te whakatau.