Whakaoti mō A
A=\frac{36197264675}{36s}
s\neq 0
Whakaoti mō s
s=\frac{36197264675}{36A}
A\neq 0
Tohaina
Kua tāruatia ki te papatopenga
35750\times 10125109=360As
Whakareatia te 143 ki te 250, ka 35750.
361972646750=360As
Whakareatia te 35750 ki te 10125109, ka 361972646750.
360As=361972646750
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
360sA=361972646750
He hanga arowhānui tō te whārite.
\frac{360sA}{360s}=\frac{361972646750}{360s}
Whakawehea ngā taha e rua ki te 360s.
A=\frac{361972646750}{360s}
Mā te whakawehe ki te 360s ka wetekia te whakareanga ki te 360s.
A=\frac{36197264675}{36s}
Whakawehe 361972646750 ki te 360s.
35750\times 10125109=360As
Whakareatia te 143 ki te 250, ka 35750.
361972646750=360As
Whakareatia te 35750 ki te 10125109, ka 361972646750.
360As=361972646750
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{360As}{360A}=\frac{361972646750}{360A}
Whakawehea ngā taha e rua ki te 360A.
s=\frac{361972646750}{360A}
Mā te whakawehe ki te 360A ka wetekia te whakareanga ki te 360A.
s=\frac{36197264675}{36A}
Whakawehe 361972646750 ki te 360A.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}