Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1428=468+88x+4x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 18+2x ki te 26+2x ka whakakotahi i ngā kupu rite.
468+88x+4x^{2}=1428
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
468+88x+4x^{2}-1428=0
Tangohia te 1428 mai i ngā taha e rua.
-960+88x+4x^{2}=0
Tangohia te 1428 i te 468, ka -960.
4x^{2}+88x-960=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-88±\sqrt{88^{2}-4\times 4\left(-960\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 88 mō b, me -960 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-88±\sqrt{7744-4\times 4\left(-960\right)}}{2\times 4}
Pūrua 88.
x=\frac{-88±\sqrt{7744-16\left(-960\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-88±\sqrt{7744+15360}}{2\times 4}
Whakareatia -16 ki te -960.
x=\frac{-88±\sqrt{23104}}{2\times 4}
Tāpiri 7744 ki te 15360.
x=\frac{-88±152}{2\times 4}
Tuhia te pūtakerua o te 23104.
x=\frac{-88±152}{8}
Whakareatia 2 ki te 4.
x=\frac{64}{8}
Nā, me whakaoti te whārite x=\frac{-88±152}{8} ina he tāpiri te ±. Tāpiri -88 ki te 152.
x=8
Whakawehe 64 ki te 8.
x=-\frac{240}{8}
Nā, me whakaoti te whārite x=\frac{-88±152}{8} ina he tango te ±. Tango 152 mai i -88.
x=-30
Whakawehe -240 ki te 8.
x=8 x=-30
Kua oti te whārite te whakatau.
1428=468+88x+4x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 18+2x ki te 26+2x ka whakakotahi i ngā kupu rite.
468+88x+4x^{2}=1428
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
88x+4x^{2}=1428-468
Tangohia te 468 mai i ngā taha e rua.
88x+4x^{2}=960
Tangohia te 468 i te 1428, ka 960.
4x^{2}+88x=960
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}+88x}{4}=\frac{960}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{88}{4}x=\frac{960}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+22x=\frac{960}{4}
Whakawehe 88 ki te 4.
x^{2}+22x=240
Whakawehe 960 ki te 4.
x^{2}+22x+11^{2}=240+11^{2}
Whakawehea te 22, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 11. Nā, tāpiria te pūrua o te 11 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+22x+121=240+121
Pūrua 11.
x^{2}+22x+121=361
Tāpiri 240 ki te 121.
\left(x+11\right)^{2}=361
Tauwehea x^{2}+22x+121. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+11\right)^{2}}=\sqrt{361}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+11=19 x+11=-19
Whakarūnātia.
x=8 x=-30
Me tango 11 mai i ngā taha e rua o te whārite.