Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{14.4}{4000}=1.025^{x}
Whakawehea ngā taha e rua ki te 4000.
\frac{144}{40000}=1.025^{x}
Whakarohaina te \frac{14.4}{4000} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{9}{2500}=1.025^{x}
Whakahekea te hautanga \frac{144}{40000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
1.025^{x}=\frac{9}{2500}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(1.025^{x})=\log(\frac{9}{2500})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
x\log(1.025)=\log(\frac{9}{2500})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x=\frac{\log(\frac{9}{2500})}{\log(1.025)}
Whakawehea ngā taha e rua ki te \log(1.025).
x=\log_{1.025}\left(\frac{9}{2500}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).