Whakaoti mō x
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
14-\left(6-x\right)^{2}=x\left(2-x\right)
Whakareatia te 6-x ki te 6-x, ka \left(6-x\right)^{2}.
14-\left(36-12x+x^{2}\right)=x\left(2-x\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6-x\right)^{2}.
14-36+12x-x^{2}=x\left(2-x\right)
Hei kimi i te tauaro o 36-12x+x^{2}, kimihia te tauaro o ia taurangi.
-22+12x-x^{2}=x\left(2-x\right)
Tangohia te 36 i te 14, ka -22.
-22+12x-x^{2}=2x-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2-x.
-22+12x-x^{2}-2x=-x^{2}
Tangohia te 2x mai i ngā taha e rua.
-22+10x-x^{2}=-x^{2}
Pahekotia te 12x me -2x, ka 10x.
-22+10x-x^{2}+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
-22+10x=0
Pahekotia te -x^{2} me x^{2}, ka 0.
10x=22
Me tāpiri te 22 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{22}{10}
Whakawehea ngā taha e rua ki te 10.
x=\frac{11}{5}
Whakahekea te hautanga \frac{22}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}