Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

14-\left(6-x\right)^{2}=x\left(2-x\right)
Whakareatia te 6-x ki te 6-x, ka \left(6-x\right)^{2}.
14-\left(36-12x+x^{2}\right)=x\left(2-x\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6-x\right)^{2}.
14-36+12x-x^{2}=x\left(2-x\right)
Hei kimi i te tauaro o 36-12x+x^{2}, kimihia te tauaro o ia taurangi.
-22+12x-x^{2}=x\left(2-x\right)
Tangohia te 36 i te 14, ka -22.
-22+12x-x^{2}=2x-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2-x.
-22+12x-x^{2}-2x=-x^{2}
Tangohia te 2x mai i ngā taha e rua.
-22+10x-x^{2}=-x^{2}
Pahekotia te 12x me -2x, ka 10x.
-22+10x-x^{2}+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
-22+10x=0
Pahekotia te -x^{2} me x^{2}, ka 0.
10x=22
Me tāpiri te 22 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{22}{10}
Whakawehea ngā taha e rua ki te 10.
x=\frac{11}{5}
Whakahekea te hautanga \frac{22}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.