Whakaoti mō x
x=\frac{3\sqrt{7}}{7}+1\approx 2.133893419
x=-\frac{3\sqrt{7}}{7}+1\approx -0.133893419
Graph
Tohaina
Kua tāruatia ki te papatopenga
14x-7x^{2}=0-2
Ko te tau i whakarea ki te kore ka hua ko te kore.
14x-7x^{2}=-2
Tangohia te 2 i te 0, ka -2.
14x-7x^{2}+2=0
Me tāpiri te 2 ki ngā taha e rua.
-7x^{2}+14x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-14±\sqrt{14^{2}-4\left(-7\right)\times 2}}{2\left(-7\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -7 mō a, 14 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-7\right)\times 2}}{2\left(-7\right)}
Pūrua 14.
x=\frac{-14±\sqrt{196+28\times 2}}{2\left(-7\right)}
Whakareatia -4 ki te -7.
x=\frac{-14±\sqrt{196+56}}{2\left(-7\right)}
Whakareatia 28 ki te 2.
x=\frac{-14±\sqrt{252}}{2\left(-7\right)}
Tāpiri 196 ki te 56.
x=\frac{-14±6\sqrt{7}}{2\left(-7\right)}
Tuhia te pūtakerua o te 252.
x=\frac{-14±6\sqrt{7}}{-14}
Whakareatia 2 ki te -7.
x=\frac{6\sqrt{7}-14}{-14}
Nā, me whakaoti te whārite x=\frac{-14±6\sqrt{7}}{-14} ina he tāpiri te ±. Tāpiri -14 ki te 6\sqrt{7}.
x=-\frac{3\sqrt{7}}{7}+1
Whakawehe -14+6\sqrt{7} ki te -14.
x=\frac{-6\sqrt{7}-14}{-14}
Nā, me whakaoti te whārite x=\frac{-14±6\sqrt{7}}{-14} ina he tango te ±. Tango 6\sqrt{7} mai i -14.
x=\frac{3\sqrt{7}}{7}+1
Whakawehe -14-6\sqrt{7} ki te -14.
x=-\frac{3\sqrt{7}}{7}+1 x=\frac{3\sqrt{7}}{7}+1
Kua oti te whārite te whakatau.
14x-7x^{2}=0-2
Ko te tau i whakarea ki te kore ka hua ko te kore.
14x-7x^{2}=-2
Tangohia te 2 i te 0, ka -2.
-7x^{2}+14x=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-7x^{2}+14x}{-7}=-\frac{2}{-7}
Whakawehea ngā taha e rua ki te -7.
x^{2}+\frac{14}{-7}x=-\frac{2}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
x^{2}-2x=-\frac{2}{-7}
Whakawehe 14 ki te -7.
x^{2}-2x=\frac{2}{7}
Whakawehe -2 ki te -7.
x^{2}-2x+1=\frac{2}{7}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{9}{7}
Tāpiri \frac{2}{7} ki te 1.
\left(x-1\right)^{2}=\frac{9}{7}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{7}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{3\sqrt{7}}{7} x-1=-\frac{3\sqrt{7}}{7}
Whakarūnātia.
x=\frac{3\sqrt{7}}{7}+1 x=-\frac{3\sqrt{7}}{7}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}