Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
14x-2x-15=x-2\left(1+x\right)
Hei kimi i te tauaro o 2x+15, kimihia te tauaro o ia taurangi.
12x-15=x-2\left(1+x\right)
Pahekotia te 14x me -2x, ka 12x.
12x-15=x-2-2x
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 1+x.
12x-15=-x-2
Pahekotia te x me -2x, ka -x.
12x-15+x=-2
Me tāpiri te x ki ngā taha e rua.
13x-15=-2
Pahekotia te 12x me x, ka 13x.
13x=-2+15
Me tāpiri te 15 ki ngā taha e rua.
13x=13
Tāpirihia te -2 ki te 15, ka 13.
x=\frac{13}{13}
Whakawehea ngā taha e rua ki te 13.
x=1
Whakawehea te 13 ki te 13, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}