Whakaoti mō x
x=\frac{\sqrt{449}-15}{7}\approx 0.884231443
x=\frac{-\sqrt{449}-15}{7}\approx -5.169945729
Graph
Tohaina
Kua tāruatia ki te papatopenga
14x^{2}+60x-64=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-60±\sqrt{60^{2}-4\times 14\left(-64\right)}}{2\times 14}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 14 mō a, 60 mō b, me -64 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 14\left(-64\right)}}{2\times 14}
Pūrua 60.
x=\frac{-60±\sqrt{3600-56\left(-64\right)}}{2\times 14}
Whakareatia -4 ki te 14.
x=\frac{-60±\sqrt{3600+3584}}{2\times 14}
Whakareatia -56 ki te -64.
x=\frac{-60±\sqrt{7184}}{2\times 14}
Tāpiri 3600 ki te 3584.
x=\frac{-60±4\sqrt{449}}{2\times 14}
Tuhia te pūtakerua o te 7184.
x=\frac{-60±4\sqrt{449}}{28}
Whakareatia 2 ki te 14.
x=\frac{4\sqrt{449}-60}{28}
Nā, me whakaoti te whārite x=\frac{-60±4\sqrt{449}}{28} ina he tāpiri te ±. Tāpiri -60 ki te 4\sqrt{449}.
x=\frac{\sqrt{449}-15}{7}
Whakawehe -60+4\sqrt{449} ki te 28.
x=\frac{-4\sqrt{449}-60}{28}
Nā, me whakaoti te whārite x=\frac{-60±4\sqrt{449}}{28} ina he tango te ±. Tango 4\sqrt{449} mai i -60.
x=\frac{-\sqrt{449}-15}{7}
Whakawehe -60-4\sqrt{449} ki te 28.
x=\frac{\sqrt{449}-15}{7} x=\frac{-\sqrt{449}-15}{7}
Kua oti te whārite te whakatau.
14x^{2}+60x-64=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
14x^{2}+60x-64-\left(-64\right)=-\left(-64\right)
Me tāpiri 64 ki ngā taha e rua o te whārite.
14x^{2}+60x=-\left(-64\right)
Mā te tango i te -64 i a ia ake anō ka toe ko te 0.
14x^{2}+60x=64
Tango -64 mai i 0.
\frac{14x^{2}+60x}{14}=\frac{64}{14}
Whakawehea ngā taha e rua ki te 14.
x^{2}+\frac{60}{14}x=\frac{64}{14}
Mā te whakawehe ki te 14 ka wetekia te whakareanga ki te 14.
x^{2}+\frac{30}{7}x=\frac{64}{14}
Whakahekea te hautanga \frac{60}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{30}{7}x=\frac{32}{7}
Whakahekea te hautanga \frac{64}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{30}{7}x+\left(\frac{15}{7}\right)^{2}=\frac{32}{7}+\left(\frac{15}{7}\right)^{2}
Whakawehea te \frac{30}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{7}. Nā, tāpiria te pūrua o te \frac{15}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{30}{7}x+\frac{225}{49}=\frac{32}{7}+\frac{225}{49}
Pūruatia \frac{15}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{30}{7}x+\frac{225}{49}=\frac{449}{49}
Tāpiri \frac{32}{7} ki te \frac{225}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{15}{7}\right)^{2}=\frac{449}{49}
Tauwehea x^{2}+\frac{30}{7}x+\frac{225}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{7}\right)^{2}}=\sqrt{\frac{449}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{7}=\frac{\sqrt{449}}{7} x+\frac{15}{7}=-\frac{\sqrt{449}}{7}
Whakarūnātia.
x=\frac{\sqrt{449}-15}{7} x=\frac{-\sqrt{449}-15}{7}
Me tango \frac{15}{7} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}