Whakaoti mō x
x=-\frac{1}{2}=-0.5
x=\frac{2}{7}\approx 0.285714286
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=3 ab=14\left(-2\right)=-28
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 14x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,28 -2,14 -4,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
-1+28=27 -2+14=12 -4+7=3
Tātaihia te tapeke mō ia takirua.
a=-4 b=7
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(14x^{2}-4x\right)+\left(7x-2\right)
Tuhia anō te 14x^{2}+3x-2 hei \left(14x^{2}-4x\right)+\left(7x-2\right).
2x\left(7x-2\right)+7x-2
Whakatauwehea atu 2x i te 14x^{2}-4x.
\left(7x-2\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 7x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{7} x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 7x-2=0 me te 2x+1=0.
14x^{2}+3x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\times 14\left(-2\right)}}{2\times 14}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 14 mō a, 3 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 14\left(-2\right)}}{2\times 14}
Pūrua 3.
x=\frac{-3±\sqrt{9-56\left(-2\right)}}{2\times 14}
Whakareatia -4 ki te 14.
x=\frac{-3±\sqrt{9+112}}{2\times 14}
Whakareatia -56 ki te -2.
x=\frac{-3±\sqrt{121}}{2\times 14}
Tāpiri 9 ki te 112.
x=\frac{-3±11}{2\times 14}
Tuhia te pūtakerua o te 121.
x=\frac{-3±11}{28}
Whakareatia 2 ki te 14.
x=\frac{8}{28}
Nā, me whakaoti te whārite x=\frac{-3±11}{28} ina he tāpiri te ±. Tāpiri -3 ki te 11.
x=\frac{2}{7}
Whakahekea te hautanga \frac{8}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{14}{28}
Nā, me whakaoti te whārite x=\frac{-3±11}{28} ina he tango te ±. Tango 11 mai i -3.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-14}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
x=\frac{2}{7} x=-\frac{1}{2}
Kua oti te whārite te whakatau.
14x^{2}+3x-2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
14x^{2}+3x-2-\left(-2\right)=-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
14x^{2}+3x=-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
14x^{2}+3x=2
Tango -2 mai i 0.
\frac{14x^{2}+3x}{14}=\frac{2}{14}
Whakawehea ngā taha e rua ki te 14.
x^{2}+\frac{3}{14}x=\frac{2}{14}
Mā te whakawehe ki te 14 ka wetekia te whakareanga ki te 14.
x^{2}+\frac{3}{14}x=\frac{1}{7}
Whakahekea te hautanga \frac{2}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{3}{14}x+\left(\frac{3}{28}\right)^{2}=\frac{1}{7}+\left(\frac{3}{28}\right)^{2}
Whakawehea te \frac{3}{14}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{28}. Nā, tāpiria te pūrua o te \frac{3}{28} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{14}x+\frac{9}{784}=\frac{1}{7}+\frac{9}{784}
Pūruatia \frac{3}{28} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{14}x+\frac{9}{784}=\frac{121}{784}
Tāpiri \frac{1}{7} ki te \frac{9}{784} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{28}\right)^{2}=\frac{121}{784}
Tauwehea te x^{2}+\frac{3}{14}x+\frac{9}{784}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{28}\right)^{2}}=\sqrt{\frac{121}{784}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{28}=\frac{11}{28} x+\frac{3}{28}=-\frac{11}{28}
Whakarūnātia.
x=\frac{2}{7} x=-\frac{1}{2}
Me tango \frac{3}{28} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}