Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

14x^{2}+2x=3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
14x^{2}+2x-3=3-3
Me tango 3 mai i ngā taha e rua o te whārite.
14x^{2}+2x-3=0
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
x=\frac{-2±\sqrt{2^{2}-4\times 14\left(-3\right)}}{2\times 14}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 14 mō a, 2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 14\left(-3\right)}}{2\times 14}
Pūrua 2.
x=\frac{-2±\sqrt{4-56\left(-3\right)}}{2\times 14}
Whakareatia -4 ki te 14.
x=\frac{-2±\sqrt{4+168}}{2\times 14}
Whakareatia -56 ki te -3.
x=\frac{-2±\sqrt{172}}{2\times 14}
Tāpiri 4 ki te 168.
x=\frac{-2±2\sqrt{43}}{2\times 14}
Tuhia te pūtakerua o te 172.
x=\frac{-2±2\sqrt{43}}{28}
Whakareatia 2 ki te 14.
x=\frac{2\sqrt{43}-2}{28}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{43}}{28} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{43}.
x=\frac{\sqrt{43}-1}{14}
Whakawehe -2+2\sqrt{43} ki te 28.
x=\frac{-2\sqrt{43}-2}{28}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{43}}{28} ina he tango te ±. Tango 2\sqrt{43} mai i -2.
x=\frac{-\sqrt{43}-1}{14}
Whakawehe -2-2\sqrt{43} ki te 28.
x=\frac{\sqrt{43}-1}{14} x=\frac{-\sqrt{43}-1}{14}
Kua oti te whārite te whakatau.
14x^{2}+2x=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{14x^{2}+2x}{14}=\frac{3}{14}
Whakawehea ngā taha e rua ki te 14.
x^{2}+\frac{2}{14}x=\frac{3}{14}
Mā te whakawehe ki te 14 ka wetekia te whakareanga ki te 14.
x^{2}+\frac{1}{7}x=\frac{3}{14}
Whakahekea te hautanga \frac{2}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{7}x+\left(\frac{1}{14}\right)^{2}=\frac{3}{14}+\left(\frac{1}{14}\right)^{2}
Whakawehea te \frac{1}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{14}. Nā, tāpiria te pūrua o te \frac{1}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{3}{14}+\frac{1}{196}
Pūruatia \frac{1}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{43}{196}
Tāpiri \frac{3}{14} ki te \frac{1}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{14}\right)^{2}=\frac{43}{196}
Tauwehea x^{2}+\frac{1}{7}x+\frac{1}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{14}\right)^{2}}=\sqrt{\frac{43}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{14}=\frac{\sqrt{43}}{14} x+\frac{1}{14}=-\frac{\sqrt{43}}{14}
Whakarūnātia.
x=\frac{\sqrt{43}-1}{14} x=\frac{-\sqrt{43}-1}{14}
Me tango \frac{1}{14} mai i ngā taha e rua o te whārite.