Tauwehe
2\left(7x-1\right)\left(x+1\right)
Aromātai
2\left(7x-1\right)\left(x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(7x^{2}+6x-1\right)
Tauwehea te 2.
a+b=6 ab=7\left(-1\right)=-7
Whakaarohia te 7x^{2}+6x-1. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 7x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(7x^{2}-x\right)+\left(7x-1\right)
Tuhia anō te 7x^{2}+6x-1 hei \left(7x^{2}-x\right)+\left(7x-1\right).
x\left(7x-1\right)+7x-1
Whakatauwehea atu x i te 7x^{2}-x.
\left(7x-1\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 7x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(7x-1\right)\left(x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
14x^{2}+12x-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 14\left(-2\right)}}{2\times 14}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{144-4\times 14\left(-2\right)}}{2\times 14}
Pūrua 12.
x=\frac{-12±\sqrt{144-56\left(-2\right)}}{2\times 14}
Whakareatia -4 ki te 14.
x=\frac{-12±\sqrt{144+112}}{2\times 14}
Whakareatia -56 ki te -2.
x=\frac{-12±\sqrt{256}}{2\times 14}
Tāpiri 144 ki te 112.
x=\frac{-12±16}{2\times 14}
Tuhia te pūtakerua o te 256.
x=\frac{-12±16}{28}
Whakareatia 2 ki te 14.
x=\frac{4}{28}
Nā, me whakaoti te whārite x=\frac{-12±16}{28} ina he tāpiri te ±. Tāpiri -12 ki te 16.
x=\frac{1}{7}
Whakahekea te hautanga \frac{4}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{28}{28}
Nā, me whakaoti te whārite x=\frac{-12±16}{28} ina he tango te ±. Tango 16 mai i -12.
x=-1
Whakawehe -28 ki te 28.
14x^{2}+12x-2=14\left(x-\frac{1}{7}\right)\left(x-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{7} mō te x_{1} me te -1 mō te x_{2}.
14x^{2}+12x-2=14\left(x-\frac{1}{7}\right)\left(x+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
14x^{2}+12x-2=14\times \frac{7x-1}{7}\left(x+1\right)
Tango \frac{1}{7} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
14x^{2}+12x-2=2\left(7x-1\right)\left(x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 7 i roto i te 14 me te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}