Aromātai
8d+7
Kimi Pārōnaki e ai ki d
8
Tohaina
Kua tāruatia ki te papatopenga
10d+11+2-6-2d
Pahekotia te 14d me -4d, ka 10d.
10d+13-6-2d
Tāpirihia te 11 ki te 2, ka 13.
10d+7-2d
Tangohia te 6 i te 13, ka 7.
8d+7
Pahekotia te 10d me -2d, ka 8d.
\frac{\mathrm{d}}{\mathrm{d}d}(10d+11+2-6-2d)
Pahekotia te 14d me -4d, ka 10d.
\frac{\mathrm{d}}{\mathrm{d}d}(10d+13-6-2d)
Tāpirihia te 11 ki te 2, ka 13.
\frac{\mathrm{d}}{\mathrm{d}d}(10d+7-2d)
Tangohia te 6 i te 13, ka 7.
\frac{\mathrm{d}}{\mathrm{d}d}(8d+7)
Pahekotia te 10d me -2d, ka 8d.
8d^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
8d^{0}
Tango 1 mai i 1.
8\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
8
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}