Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

14-9a^{2}+4a^{2}=-16
Me tāpiri te 4a^{2} ki ngā taha e rua.
14-5a^{2}=-16
Pahekotia te -9a^{2} me 4a^{2}, ka -5a^{2}.
-5a^{2}=-16-14
Tangohia te 14 mai i ngā taha e rua.
-5a^{2}=-30
Tangohia te 14 i te -16, ka -30.
a^{2}=\frac{-30}{-5}
Whakawehea ngā taha e rua ki te -5.
a^{2}=6
Whakawehea te -30 ki te -5, kia riro ko 6.
a=\sqrt{6} a=-\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
14-9a^{2}-\left(-16\right)=-4a^{2}
Tangohia te -16 mai i ngā taha e rua.
14-9a^{2}+16=-4a^{2}
Ko te tauaro o -16 ko 16.
14-9a^{2}+16+4a^{2}=0
Me tāpiri te 4a^{2} ki ngā taha e rua.
30-9a^{2}+4a^{2}=0
Tāpirihia te 14 ki te 16, ka 30.
30-5a^{2}=0
Pahekotia te -9a^{2} me 4a^{2}, ka -5a^{2}.
-5a^{2}+30=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 30}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 0 mō b, me 30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-5\right)\times 30}}{2\left(-5\right)}
Pūrua 0.
a=\frac{0±\sqrt{20\times 30}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
a=\frac{0±\sqrt{600}}{2\left(-5\right)}
Whakareatia 20 ki te 30.
a=\frac{0±10\sqrt{6}}{2\left(-5\right)}
Tuhia te pūtakerua o te 600.
a=\frac{0±10\sqrt{6}}{-10}
Whakareatia 2 ki te -5.
a=-\sqrt{6}
Nā, me whakaoti te whārite a=\frac{0±10\sqrt{6}}{-10} ina he tāpiri te ±.
a=\sqrt{6}
Nā, me whakaoti te whārite a=\frac{0±10\sqrt{6}}{-10} ina he tango te ±.
a=-\sqrt{6} a=\sqrt{6}
Kua oti te whārite te whakatau.