Whakaoti mō a
a=\sqrt{6}\approx 2.449489743
a=-\sqrt{6}\approx -2.449489743
Tohaina
Kua tāruatia ki te papatopenga
14-9a^{2}+4a^{2}=-16
Me tāpiri te 4a^{2} ki ngā taha e rua.
14-5a^{2}=-16
Pahekotia te -9a^{2} me 4a^{2}, ka -5a^{2}.
-5a^{2}=-16-14
Tangohia te 14 mai i ngā taha e rua.
-5a^{2}=-30
Tangohia te 14 i te -16, ka -30.
a^{2}=\frac{-30}{-5}
Whakawehea ngā taha e rua ki te -5.
a^{2}=6
Whakawehea te -30 ki te -5, kia riro ko 6.
a=\sqrt{6} a=-\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
14-9a^{2}-\left(-16\right)=-4a^{2}
Tangohia te -16 mai i ngā taha e rua.
14-9a^{2}+16=-4a^{2}
Ko te tauaro o -16 ko 16.
14-9a^{2}+16+4a^{2}=0
Me tāpiri te 4a^{2} ki ngā taha e rua.
30-9a^{2}+4a^{2}=0
Tāpirihia te 14 ki te 16, ka 30.
30-5a^{2}=0
Pahekotia te -9a^{2} me 4a^{2}, ka -5a^{2}.
-5a^{2}+30=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 30}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 0 mō b, me 30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-5\right)\times 30}}{2\left(-5\right)}
Pūrua 0.
a=\frac{0±\sqrt{20\times 30}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
a=\frac{0±\sqrt{600}}{2\left(-5\right)}
Whakareatia 20 ki te 30.
a=\frac{0±10\sqrt{6}}{2\left(-5\right)}
Tuhia te pūtakerua o te 600.
a=\frac{0±10\sqrt{6}}{-10}
Whakareatia 2 ki te -5.
a=-\sqrt{6}
Nā, me whakaoti te whārite a=\frac{0±10\sqrt{6}}{-10} ina he tāpiri te ±.
a=\sqrt{6}
Nā, me whakaoti te whārite a=\frac{0±10\sqrt{6}}{-10} ina he tango te ±.
a=-\sqrt{6} a=\sqrt{6}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}