14 - ( 5 x - 1 ) ( 2 x + 3 ) = 17 - ( 10 x + 19 ( x - 6 )
Whakaoti mō x (complex solution)
x=\frac{4+\sqrt{269}i}{5}\approx 0.8+3.280243893i
x=\frac{-\sqrt{269}i+4}{5}\approx 0.8-3.280243893i
Graph
Tohaina
Kua tāruatia ki te papatopenga
14-\left(10x^{2}+13x-3\right)=17-\left(10x+19\left(x-6\right)\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x-1 ki te 2x+3 ka whakakotahi i ngā kupu rite.
14-10x^{2}-13x+3=17-\left(10x+19\left(x-6\right)\right)
Hei kimi i te tauaro o 10x^{2}+13x-3, kimihia te tauaro o ia taurangi.
17-10x^{2}-13x=17-\left(10x+19\left(x-6\right)\right)
Tāpirihia te 14 ki te 3, ka 17.
17-10x^{2}-13x=17-\left(10x+19x-114\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 19 ki te x-6.
17-10x^{2}-13x=17-\left(29x-114\right)
Pahekotia te 10x me 19x, ka 29x.
17-10x^{2}-13x=17-29x+114
Hei kimi i te tauaro o 29x-114, kimihia te tauaro o ia taurangi.
17-10x^{2}-13x=131-29x
Tāpirihia te 17 ki te 114, ka 131.
17-10x^{2}-13x-131=-29x
Tangohia te 131 mai i ngā taha e rua.
-114-10x^{2}-13x=-29x
Tangohia te 131 i te 17, ka -114.
-114-10x^{2}-13x+29x=0
Me tāpiri te 29x ki ngā taha e rua.
-114-10x^{2}+16x=0
Pahekotia te -13x me 29x, ka 16x.
-10x^{2}+16x-114=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-16±\sqrt{16^{2}-4\left(-10\right)\left(-114\right)}}{2\left(-10\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -10 mō a, 16 mō b, me -114 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-10\right)\left(-114\right)}}{2\left(-10\right)}
Pūrua 16.
x=\frac{-16±\sqrt{256+40\left(-114\right)}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
x=\frac{-16±\sqrt{256-4560}}{2\left(-10\right)}
Whakareatia 40 ki te -114.
x=\frac{-16±\sqrt{-4304}}{2\left(-10\right)}
Tāpiri 256 ki te -4560.
x=\frac{-16±4\sqrt{269}i}{2\left(-10\right)}
Tuhia te pūtakerua o te -4304.
x=\frac{-16±4\sqrt{269}i}{-20}
Whakareatia 2 ki te -10.
x=\frac{-16+4\sqrt{269}i}{-20}
Nā, me whakaoti te whārite x=\frac{-16±4\sqrt{269}i}{-20} ina he tāpiri te ±. Tāpiri -16 ki te 4i\sqrt{269}.
x=\frac{-\sqrt{269}i+4}{5}
Whakawehe -16+4i\sqrt{269} ki te -20.
x=\frac{-4\sqrt{269}i-16}{-20}
Nā, me whakaoti te whārite x=\frac{-16±4\sqrt{269}i}{-20} ina he tango te ±. Tango 4i\sqrt{269} mai i -16.
x=\frac{4+\sqrt{269}i}{5}
Whakawehe -16-4i\sqrt{269} ki te -20.
x=\frac{-\sqrt{269}i+4}{5} x=\frac{4+\sqrt{269}i}{5}
Kua oti te whārite te whakatau.
14-\left(10x^{2}+13x-3\right)=17-\left(10x+19\left(x-6\right)\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x-1 ki te 2x+3 ka whakakotahi i ngā kupu rite.
14-10x^{2}-13x+3=17-\left(10x+19\left(x-6\right)\right)
Hei kimi i te tauaro o 10x^{2}+13x-3, kimihia te tauaro o ia taurangi.
17-10x^{2}-13x=17-\left(10x+19\left(x-6\right)\right)
Tāpirihia te 14 ki te 3, ka 17.
17-10x^{2}-13x=17-\left(10x+19x-114\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 19 ki te x-6.
17-10x^{2}-13x=17-\left(29x-114\right)
Pahekotia te 10x me 19x, ka 29x.
17-10x^{2}-13x=17-29x+114
Hei kimi i te tauaro o 29x-114, kimihia te tauaro o ia taurangi.
17-10x^{2}-13x=131-29x
Tāpirihia te 17 ki te 114, ka 131.
17-10x^{2}-13x+29x=131
Me tāpiri te 29x ki ngā taha e rua.
17-10x^{2}+16x=131
Pahekotia te -13x me 29x, ka 16x.
-10x^{2}+16x=131-17
Tangohia te 17 mai i ngā taha e rua.
-10x^{2}+16x=114
Tangohia te 17 i te 131, ka 114.
\frac{-10x^{2}+16x}{-10}=\frac{114}{-10}
Whakawehea ngā taha e rua ki te -10.
x^{2}+\frac{16}{-10}x=\frac{114}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
x^{2}-\frac{8}{5}x=\frac{114}{-10}
Whakahekea te hautanga \frac{16}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{8}{5}x=-\frac{57}{5}
Whakahekea te hautanga \frac{114}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{57}{5}+\left(-\frac{4}{5}\right)^{2}
Whakawehea te -\frac{8}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{5}. Nā, tāpiria te pūrua o te -\frac{4}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{57}{5}+\frac{16}{25}
Pūruatia -\frac{4}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{269}{25}
Tāpiri -\frac{57}{5} ki te \frac{16}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{4}{5}\right)^{2}=-\frac{269}{25}
Tauwehea x^{2}-\frac{8}{5}x+\frac{16}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{-\frac{269}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{5}=\frac{\sqrt{269}i}{5} x-\frac{4}{5}=-\frac{\sqrt{269}i}{5}
Whakarūnātia.
x=\frac{4+\sqrt{269}i}{5} x=\frac{-\sqrt{269}i+4}{5}
Me tāpiri \frac{4}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}