Whakaoti mō t
t = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
28t-42-2\left(t+2\right)=10\left(3t-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 14 ki te 2t-3.
28t-42-2t-4=10\left(3t-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te t+2.
26t-42-4=10\left(3t-4\right)
Pahekotia te 28t me -2t, ka 26t.
26t-46=10\left(3t-4\right)
Tangohia te 4 i te -42, ka -46.
26t-46=30t-40
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te 3t-4.
26t-46-30t=-40
Tangohia te 30t mai i ngā taha e rua.
-4t-46=-40
Pahekotia te 26t me -30t, ka -4t.
-4t=-40+46
Me tāpiri te 46 ki ngā taha e rua.
-4t=6
Tāpirihia te -40 ki te 46, ka 6.
t=\frac{6}{-4}
Whakawehea ngā taha e rua ki te -4.
t=-\frac{3}{2}
Whakahekea te hautanga \frac{6}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}