Aromātai
1592.1
Tauwehe
\frac{29 \cdot 61 \cdot 3 ^ {2}}{2 \cdot 5} = 1592\frac{1}{10} = 1592.1
Pātaitai
Arithmetic
14 \times 100 + 30 \times 1.2 + 95 \times 1.4 \times 0.7 + 90 \times 1.4 \times 0.5 =
Tohaina
Kua tāruatia ki te papatopenga
1400+30\times 1.2+95\times 1.4\times 0.7+90\times 1.4\times 0.5
Whakareatia te 14 ki te 100, ka 1400.
1400+36+95\times 1.4\times 0.7+90\times 1.4\times 0.5
Whakareatia te 30 ki te 1.2, ka 36.
1436+95\times 1.4\times 0.7+90\times 1.4\times 0.5
Tāpirihia te 1400 ki te 36, ka 1436.
1436+133\times 0.7+90\times 1.4\times 0.5
Whakareatia te 95 ki te 1.4, ka 133.
1436+93.1+90\times 1.4\times 0.5
Whakareatia te 133 ki te 0.7, ka 93.1.
1529.1+90\times 1.4\times 0.5
Tāpirihia te 1436 ki te 93.1, ka 1529.1.
1529.1+126\times 0.5
Whakareatia te 90 ki te 1.4, ka 126.
1529.1+63
Whakareatia te 126 ki te 0.5, ka 63.
1592.1
Tāpirihia te 1529.1 ki te 63, ka 1592.1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}