Whakaoti mō x
x=9
x=16
Graph
Tohaina
Kua tāruatia ki te papatopenga
14x\times \frac{14}{12+x}=4\left(x+12\right)
Tē taea kia ōrite te tāupe x ki -12 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+12.
\frac{14\times 14}{12+x}x=4\left(x+12\right)
Tuhia te 14\times \frac{14}{12+x} hei hautanga kotahi.
\frac{14\times 14}{12+x}x=4x+48
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+12.
\frac{196}{12+x}x=4x+48
Whakareatia te 14 ki te 14, ka 196.
\frac{196x}{12+x}=4x+48
Tuhia te \frac{196}{12+x}x hei hautanga kotahi.
\frac{196x}{12+x}-4x=48
Tangohia te 4x mai i ngā taha e rua.
\frac{196x}{12+x}+\frac{-4x\left(12+x\right)}{12+x}=48
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -4x ki te \frac{12+x}{12+x}.
\frac{196x-4x\left(12+x\right)}{12+x}=48
Tā te mea he rite te tauraro o \frac{196x}{12+x} me \frac{-4x\left(12+x\right)}{12+x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{196x-48x-4x^{2}}{12+x}=48
Mahia ngā whakarea i roto o 196x-4x\left(12+x\right).
\frac{148x-4x^{2}}{12+x}=48
Whakakotahitia ngā kupu rite i 196x-48x-4x^{2}.
\frac{148x-4x^{2}}{12+x}-48=0
Tangohia te 48 mai i ngā taha e rua.
\frac{148x-4x^{2}}{12+x}-\frac{48\left(12+x\right)}{12+x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 48 ki te \frac{12+x}{12+x}.
\frac{148x-4x^{2}-48\left(12+x\right)}{12+x}=0
Tā te mea he rite te tauraro o \frac{148x-4x^{2}}{12+x} me \frac{48\left(12+x\right)}{12+x}, me tango rāua mā te tango i ō raua taurunga.
\frac{148x-4x^{2}-576-48x}{12+x}=0
Mahia ngā whakarea i roto o 148x-4x^{2}-48\left(12+x\right).
\frac{100x-4x^{2}-576}{12+x}=0
Whakakotahitia ngā kupu rite i 148x-4x^{2}-576-48x.
100x-4x^{2}-576=0
Tē taea kia ōrite te tāupe x ki -12 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+12.
-4x^{2}+100x-576=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-100±\sqrt{100^{2}-4\left(-4\right)\left(-576\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 100 mō b, me -576 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-4\right)\left(-576\right)}}{2\left(-4\right)}
Pūrua 100.
x=\frac{-100±\sqrt{10000+16\left(-576\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-100±\sqrt{10000-9216}}{2\left(-4\right)}
Whakareatia 16 ki te -576.
x=\frac{-100±\sqrt{784}}{2\left(-4\right)}
Tāpiri 10000 ki te -9216.
x=\frac{-100±28}{2\left(-4\right)}
Tuhia te pūtakerua o te 784.
x=\frac{-100±28}{-8}
Whakareatia 2 ki te -4.
x=-\frac{72}{-8}
Nā, me whakaoti te whārite x=\frac{-100±28}{-8} ina he tāpiri te ±. Tāpiri -100 ki te 28.
x=9
Whakawehe -72 ki te -8.
x=-\frac{128}{-8}
Nā, me whakaoti te whārite x=\frac{-100±28}{-8} ina he tango te ±. Tango 28 mai i -100.
x=16
Whakawehe -128 ki te -8.
x=9 x=16
Kua oti te whārite te whakatau.
14x\times \frac{14}{12+x}=4\left(x+12\right)
Tē taea kia ōrite te tāupe x ki -12 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+12.
\frac{14\times 14}{12+x}x=4\left(x+12\right)
Tuhia te 14\times \frac{14}{12+x} hei hautanga kotahi.
\frac{14\times 14}{12+x}x=4x+48
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+12.
\frac{196}{12+x}x=4x+48
Whakareatia te 14 ki te 14, ka 196.
\frac{196x}{12+x}=4x+48
Tuhia te \frac{196}{12+x}x hei hautanga kotahi.
\frac{196x}{12+x}-4x=48
Tangohia te 4x mai i ngā taha e rua.
\frac{196x}{12+x}+\frac{-4x\left(12+x\right)}{12+x}=48
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -4x ki te \frac{12+x}{12+x}.
\frac{196x-4x\left(12+x\right)}{12+x}=48
Tā te mea he rite te tauraro o \frac{196x}{12+x} me \frac{-4x\left(12+x\right)}{12+x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{196x-48x-4x^{2}}{12+x}=48
Mahia ngā whakarea i roto o 196x-4x\left(12+x\right).
\frac{148x-4x^{2}}{12+x}=48
Whakakotahitia ngā kupu rite i 196x-48x-4x^{2}.
148x-4x^{2}=48\left(x+12\right)
Tē taea kia ōrite te tāupe x ki -12 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+12.
148x-4x^{2}=48x+576
Whakamahia te āhuatanga tohatoha hei whakarea te 48 ki te x+12.
148x-4x^{2}-48x=576
Tangohia te 48x mai i ngā taha e rua.
100x-4x^{2}=576
Pahekotia te 148x me -48x, ka 100x.
-4x^{2}+100x=576
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4x^{2}+100x}{-4}=\frac{576}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{100}{-4}x=\frac{576}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-25x=\frac{576}{-4}
Whakawehe 100 ki te -4.
x^{2}-25x=-144
Whakawehe 576 ki te -4.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-144+\left(-\frac{25}{2}\right)^{2}
Whakawehea te -25, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{25}{2}. Nā, tāpiria te pūrua o te -\frac{25}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-25x+\frac{625}{4}=-144+\frac{625}{4}
Pūruatia -\frac{25}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-25x+\frac{625}{4}=\frac{49}{4}
Tāpiri -144 ki te \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-25x+\frac{625}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{25}{2}=\frac{7}{2} x-\frac{25}{2}=-\frac{7}{2}
Whakarūnātia.
x=16 x=9
Me tāpiri \frac{25}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}