Aromātai
\frac{197}{6}\approx 32.833333333
Tauwehe
\frac{197}{2 \cdot 3} = 32\frac{5}{6} = 32.833333333333336
Tohaina
Kua tāruatia ki te papatopenga
\frac{168+11}{12}+\frac{17\times 12+11}{12}
Whakareatia te 14 ki te 12, ka 168.
\frac{179}{12}+\frac{17\times 12+11}{12}
Tāpirihia te 168 ki te 11, ka 179.
\frac{179}{12}+\frac{204+11}{12}
Whakareatia te 17 ki te 12, ka 204.
\frac{179}{12}+\frac{215}{12}
Tāpirihia te 204 ki te 11, ka 215.
\frac{179+215}{12}
Tā te mea he rite te tauraro o \frac{179}{12} me \frac{215}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{394}{12}
Tāpirihia te 179 ki te 215, ka 394.
\frac{197}{6}
Whakahekea te hautanga \frac{394}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}