Aromātai
-\frac{76}{5}=-15.2
Tauwehe
-\frac{76}{5} = -15\frac{1}{5} = -15.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{14\times 18}{-10}+\frac{110}{11}
Whakawehe 14 ki te \frac{-10}{18} mā te whakarea 14 ki te tau huripoki o \frac{-10}{18}.
\frac{252}{-10}+\frac{110}{11}
Whakareatia te 14 ki te 18, ka 252.
-\frac{126}{5}+\frac{110}{11}
Whakahekea te hautanga \frac{252}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{126}{5}+10
Whakawehea te 110 ki te 11, kia riro ko 10.
-\frac{126}{5}+\frac{50}{5}
Me tahuri te 10 ki te hautau \frac{50}{5}.
\frac{-126+50}{5}
Tā te mea he rite te tauraro o -\frac{126}{5} me \frac{50}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{76}{5}
Tāpirihia te -126 ki te 50, ka -76.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}