Whakaoti mō F_1
F_{1}=-\frac{1}{13698}+\frac{1}{1522x}
x\neq 0
Whakaoti mō x
x=\frac{9}{13698F_{1}+1}
F_{1}\neq -\frac{1}{13698}
Graph
Tohaina
Kua tāruatia ki te papatopenga
13698F_{1}x=9-x
Whakareatia ngā taha e rua o te whārite ki te x.
13698xF_{1}=9-x
He hanga arowhānui tō te whārite.
\frac{13698xF_{1}}{13698x}=\frac{9-x}{13698x}
Whakawehea ngā taha e rua ki te 13698x.
F_{1}=\frac{9-x}{13698x}
Mā te whakawehe ki te 13698x ka wetekia te whakareanga ki te 13698x.
F_{1}=-\frac{1}{13698}+\frac{1}{1522x}
Whakawehe 9-x ki te 13698x.
13698F_{1}x=9-x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
13698F_{1}x+x=9
Me tāpiri te x ki ngā taha e rua.
\left(13698F_{1}+1\right)x=9
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(13698F_{1}+1\right)x}{13698F_{1}+1}=\frac{9}{13698F_{1}+1}
Whakawehea ngā taha e rua ki te 13698F_{1}+1.
x=\frac{9}{13698F_{1}+1}
Mā te whakawehe ki te 13698F_{1}+1 ka wetekia te whakareanga ki te 13698F_{1}+1.
x=\frac{9}{13698F_{1}+1}\text{, }x\neq 0
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}