Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

136\times 10^{-2}x=-x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
136\times \frac{1}{100}x=-x^{2}
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
\frac{34}{25}x=-x^{2}
Whakareatia te 136 ki te \frac{1}{100}, ka \frac{34}{25}.
\frac{34}{25}x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
x\left(\frac{34}{25}+x\right)=0
Tauwehea te x.
x=0 x=-\frac{34}{25}
Hei kimi otinga whārite, me whakaoti te x=0 me te \frac{34}{25}+x=0.
x=-\frac{34}{25}
Tē taea kia ōrite te tāupe x ki 0.
136\times 10^{-2}x=-x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
136\times \frac{1}{100}x=-x^{2}
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
\frac{34}{25}x=-x^{2}
Whakareatia te 136 ki te \frac{1}{100}, ka \frac{34}{25}.
\frac{34}{25}x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
x^{2}+\frac{34}{25}x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{34}{25}±\sqrt{\left(\frac{34}{25}\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, \frac{34}{25} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{34}{25}±\frac{34}{25}}{2}
Tuhia te pūtakerua o te \left(\frac{34}{25}\right)^{2}.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{-\frac{34}{25}±\frac{34}{25}}{2} ina he tāpiri te ±. Tāpiri -\frac{34}{25} ki te \frac{34}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te 2.
x=-\frac{\frac{68}{25}}{2}
Nā, me whakaoti te whārite x=\frac{-\frac{34}{25}±\frac{34}{25}}{2} ina he tango te ±. Tango \frac{34}{25} mai i -\frac{34}{25} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{34}{25}
Whakawehe -\frac{68}{25} ki te 2.
x=0 x=-\frac{34}{25}
Kua oti te whārite te whakatau.
x=-\frac{34}{25}
Tē taea kia ōrite te tāupe x ki 0.
136\times 10^{-2}x=-x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
136\times \frac{1}{100}x=-x^{2}
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
\frac{34}{25}x=-x^{2}
Whakareatia te 136 ki te \frac{1}{100}, ka \frac{34}{25}.
\frac{34}{25}x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
x^{2}+\frac{34}{25}x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+\frac{34}{25}x+\left(\frac{17}{25}\right)^{2}=\left(\frac{17}{25}\right)^{2}
Whakawehea te \frac{34}{25}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{17}{25}. Nā, tāpiria te pūrua o te \frac{17}{25} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{34}{25}x+\frac{289}{625}=\frac{289}{625}
Pūruatia \frac{17}{25} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{17}{25}\right)^{2}=\frac{289}{625}
Tauwehea x^{2}+\frac{34}{25}x+\frac{289}{625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{25}\right)^{2}}=\sqrt{\frac{289}{625}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{17}{25}=\frac{17}{25} x+\frac{17}{25}=-\frac{17}{25}
Whakarūnātia.
x=0 x=-\frac{34}{25}
Me tango \frac{17}{25} mai i ngā taha e rua o te whārite.
x=-\frac{34}{25}
Tē taea kia ōrite te tāupe x ki 0.