Aromātai
\frac{a+134c-1}{c}
Kimi Pārōnaki e ai ki c
\frac{1-a}{c^{2}}
Tohaina
Kua tāruatia ki te papatopenga
134+\frac{a^{2}-2a+1}{\left(a-1\right)c}
Whakawehe \frac{1}{a-1} ki te \frac{c}{a^{2}-2a+1} mā te whakarea \frac{1}{a-1} ki te tau huripoki o \frac{c}{a^{2}-2a+1}.
134+\frac{\left(a-1\right)^{2}}{c\left(a-1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a^{2}-2a+1}{\left(a-1\right)c}.
134+\frac{a-1}{c}
Me whakakore tahi te a-1 i te taurunga me te tauraro.
\frac{134c}{c}+\frac{a-1}{c}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 134 ki te \frac{c}{c}.
\frac{134c+a-1}{c}
Tā te mea he rite te tauraro o \frac{134c}{c} me \frac{a-1}{c}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}