Whakaoti mō n
n=\frac{\sqrt{53305}}{10}-\frac{1}{2}\approx 22.587875606
n=-\frac{\sqrt{53305}}{10}-\frac{1}{2}\approx -23.587875606
Tohaina
Kua tāruatia ki te papatopenga
25n^{2}+25n=13320
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
25n^{2}+25n-13320=0
Tangohia te 13320 mai i ngā taha e rua.
n=\frac{-25±\sqrt{25^{2}-4\times 25\left(-13320\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 25 mō b, me -13320 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-25±\sqrt{625-4\times 25\left(-13320\right)}}{2\times 25}
Pūrua 25.
n=\frac{-25±\sqrt{625-100\left(-13320\right)}}{2\times 25}
Whakareatia -4 ki te 25.
n=\frac{-25±\sqrt{625+1332000}}{2\times 25}
Whakareatia -100 ki te -13320.
n=\frac{-25±\sqrt{1332625}}{2\times 25}
Tāpiri 625 ki te 1332000.
n=\frac{-25±5\sqrt{53305}}{2\times 25}
Tuhia te pūtakerua o te 1332625.
n=\frac{-25±5\sqrt{53305}}{50}
Whakareatia 2 ki te 25.
n=\frac{5\sqrt{53305}-25}{50}
Nā, me whakaoti te whārite n=\frac{-25±5\sqrt{53305}}{50} ina he tāpiri te ±. Tāpiri -25 ki te 5\sqrt{53305}.
n=\frac{\sqrt{53305}}{10}-\frac{1}{2}
Whakawehe -25+5\sqrt{53305} ki te 50.
n=\frac{-5\sqrt{53305}-25}{50}
Nā, me whakaoti te whārite n=\frac{-25±5\sqrt{53305}}{50} ina he tango te ±. Tango 5\sqrt{53305} mai i -25.
n=-\frac{\sqrt{53305}}{10}-\frac{1}{2}
Whakawehe -25-5\sqrt{53305} ki te 50.
n=\frac{\sqrt{53305}}{10}-\frac{1}{2} n=-\frac{\sqrt{53305}}{10}-\frac{1}{2}
Kua oti te whārite te whakatau.
25n^{2}+25n=13320
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{25n^{2}+25n}{25}=\frac{13320}{25}
Whakawehea ngā taha e rua ki te 25.
n^{2}+\frac{25}{25}n=\frac{13320}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
n^{2}+n=\frac{13320}{25}
Whakawehe 25 ki te 25.
n^{2}+n=\frac{2664}{5}
Whakahekea te hautanga \frac{13320}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=\frac{2664}{5}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+n+\frac{1}{4}=\frac{2664}{5}+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+n+\frac{1}{4}=\frac{10661}{20}
Tāpiri \frac{2664}{5} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n+\frac{1}{2}\right)^{2}=\frac{10661}{20}
Tauwehea n^{2}+n+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{10661}{20}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{1}{2}=\frac{\sqrt{53305}}{10} n+\frac{1}{2}=-\frac{\sqrt{53305}}{10}
Whakarūnātia.
n=\frac{\sqrt{53305}}{10}-\frac{1}{2} n=-\frac{\sqrt{53305}}{10}-\frac{1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}