Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1330}{16}=x^{2}
Whakawehea ngā taha e rua ki te 16.
\frac{665}{8}=x^{2}
Whakahekea te hautanga \frac{1330}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}=\frac{665}{8}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{\sqrt{1330}}{4} x=-\frac{\sqrt{1330}}{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{1330}{16}=x^{2}
Whakawehea ngā taha e rua ki te 16.
\frac{665}{8}=x^{2}
Whakahekea te hautanga \frac{1330}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}=\frac{665}{8}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-\frac{665}{8}=0
Tangohia te \frac{665}{8} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{665}{8}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{665}{8} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{665}{8}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{\frac{665}{2}}}{2}
Whakareatia -4 ki te -\frac{665}{8}.
x=\frac{0±\frac{\sqrt{1330}}{2}}{2}
Tuhia te pūtakerua o te \frac{665}{2}.
x=\frac{\sqrt{1330}}{4}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{1330}}{2}}{2} ina he tāpiri te ±.
x=-\frac{\sqrt{1330}}{4}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{1330}}{2}}{2} ina he tango te ±.
x=\frac{\sqrt{1330}}{4} x=-\frac{\sqrt{1330}}{4}
Kua oti te whārite te whakatau.