Whakaoti mō x
x=\frac{\sqrt{6304375986}}{122}-650\approx 0.820497274
x=-\frac{\sqrt{6304375986}}{122}-650\approx -1300.820497274
Graph
Tohaina
Kua tāruatia ki te papatopenga
1302.13=\left(1586+1.22x\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te 1.22 ki te 1300+x.
1302.13=1586x+1.22x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1586+1.22x ki te x.
1586x+1.22x^{2}=1302.13
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1586x+1.22x^{2}-1302.13=0
Tangohia te 1302.13 mai i ngā taha e rua.
1.22x^{2}+1586x-1302.13=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1586±\sqrt{1586^{2}-4\times 1.22\left(-1302.13\right)}}{2\times 1.22}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1.22 mō a, 1586 mō b, me -1302.13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1586±\sqrt{2515396-4\times 1.22\left(-1302.13\right)}}{2\times 1.22}
Pūrua 1586.
x=\frac{-1586±\sqrt{2515396-4.88\left(-1302.13\right)}}{2\times 1.22}
Whakareatia -4 ki te 1.22.
x=\frac{-1586±\sqrt{2515396+6354.3944}}{2\times 1.22}
Whakareatia -4.88 ki te -1302.13 mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-1586±\sqrt{2521750.3944}}{2\times 1.22}
Tāpiri 2515396 ki te 6354.3944.
x=\frac{-1586±\frac{\sqrt{6304375986}}{50}}{2\times 1.22}
Tuhia te pūtakerua o te 2521750.3944.
x=\frac{-1586±\frac{\sqrt{6304375986}}{50}}{2.44}
Whakareatia 2 ki te 1.22.
x=\frac{\frac{\sqrt{6304375986}}{50}-1586}{2.44}
Nā, me whakaoti te whārite x=\frac{-1586±\frac{\sqrt{6304375986}}{50}}{2.44} ina he tāpiri te ±. Tāpiri -1586 ki te \frac{\sqrt{6304375986}}{50}.
x=\frac{\sqrt{6304375986}}{122}-650
Whakawehe -1586+\frac{\sqrt{6304375986}}{50} ki te 2.44 mā te whakarea -1586+\frac{\sqrt{6304375986}}{50} ki te tau huripoki o 2.44.
x=\frac{-\frac{\sqrt{6304375986}}{50}-1586}{2.44}
Nā, me whakaoti te whārite x=\frac{-1586±\frac{\sqrt{6304375986}}{50}}{2.44} ina he tango te ±. Tango \frac{\sqrt{6304375986}}{50} mai i -1586.
x=-\frac{\sqrt{6304375986}}{122}-650
Whakawehe -1586-\frac{\sqrt{6304375986}}{50} ki te 2.44 mā te whakarea -1586-\frac{\sqrt{6304375986}}{50} ki te tau huripoki o 2.44.
x=\frac{\sqrt{6304375986}}{122}-650 x=-\frac{\sqrt{6304375986}}{122}-650
Kua oti te whārite te whakatau.
1302.13=\left(1586+1.22x\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te 1.22 ki te 1300+x.
1302.13=1586x+1.22x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1586+1.22x ki te x.
1586x+1.22x^{2}=1302.13
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1.22x^{2}+1586x=1302.13
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1.22x^{2}+1586x}{1.22}=\frac{1302.13}{1.22}
Whakawehea ngā taha e rua o te whārite ki te 1.22, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{1586}{1.22}x=\frac{1302.13}{1.22}
Mā te whakawehe ki te 1.22 ka wetekia te whakareanga ki te 1.22.
x^{2}+1300x=\frac{1302.13}{1.22}
Whakawehe 1586 ki te 1.22 mā te whakarea 1586 ki te tau huripoki o 1.22.
x^{2}+1300x=\frac{130213}{122}
Whakawehe 1302.13 ki te 1.22 mā te whakarea 1302.13 ki te tau huripoki o 1.22.
x^{2}+1300x+650^{2}=\frac{130213}{122}+650^{2}
Whakawehea te 1300, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 650. Nā, tāpiria te pūrua o te 650 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+1300x+422500=\frac{130213}{122}+422500
Pūrua 650.
x^{2}+1300x+422500=\frac{51675213}{122}
Tāpiri \frac{130213}{122} ki te 422500.
\left(x+650\right)^{2}=\frac{51675213}{122}
Tauwehea x^{2}+1300x+422500. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+650\right)^{2}}=\sqrt{\frac{51675213}{122}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+650=\frac{\sqrt{6304375986}}{122} x+650=-\frac{\sqrt{6304375986}}{122}
Whakarūnātia.
x=\frac{\sqrt{6304375986}}{122}-650 x=-\frac{\sqrt{6304375986}}{122}-650
Me tango 650 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}