13.5-2 \%
Aromātai
13.48
Tauwehe
\frac{337}{5 ^ {2}} = 13\frac{12}{25} = 13.48
Tohaina
Kua tāruatia ki te papatopenga
13.5-\frac{1}{50}
Whakahekea te hautanga \frac{2}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{27}{2}-\frac{1}{50}
Me tahuri ki tau ā-ira 13.5 ki te hautau \frac{135}{10}. Whakahekea te hautanga \frac{135}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{675}{50}-\frac{1}{50}
Ko te maha noa iti rawa atu o 2 me 50 ko 50. Me tahuri \frac{27}{2} me \frac{1}{50} ki te hautau me te tautūnga 50.
\frac{675-1}{50}
Tā te mea he rite te tauraro o \frac{675}{50} me \frac{1}{50}, me tango rāua mā te tango i ō raua taurunga.
\frac{674}{50}
Tangohia te 1 i te 675, ka 674.
\frac{337}{25}
Whakahekea te hautanga \frac{674}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}