Aromātai
214.5
Tauwehe
\frac{3 \cdot 11 \cdot 13}{2} = 214\frac{1}{2} = 214.5
Tohaina
Kua tāruatia ki te papatopenga
148.5+22.8\times 2+10.2\times 2
Whakareatia te 13.5 ki te 11, ka 148.5.
148.5+45.6+10.2\times 2
Whakareatia te 22.8 ki te 2, ka 45.6.
194.1+10.2\times 2
Tāpirihia te 148.5 ki te 45.6, ka 194.1.
194.1+20.4
Whakareatia te 10.2 ki te 2, ka 20.4.
214.5
Tāpirihia te 194.1 ki te 20.4, ka 214.5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}